熱帶氣旋重力波的激發(fā)和傳播機制研究
[Abstract]:Atmospheric gravity waves, which can transmit momentum and energy to the background atmosphere continuously during their upward propagation, are considered to be the most important physical processes in the coupling process between the lower and middle atmosphere. Strong convection is also one of the most important wave sources to excite atmospheric gravity waves, especially in the tropics. Typhoons (or tropical cyclones in the South Pacific region) formed in the Northwest Pacific region are large-scale strong convective systems capable of generating convective gravity waves with wavelengths of several hundred kilometers and periods of several hours. Typhoon gravity waves form in the troposphere around the typhoon track and can propagate horizontally and vertically. Typhoon gravity waves play an important role in momentum transmission in the upper and middle atmosphere and affect global atmospheric circulation. In recent decades, researchers have spared no effort to explore the use of observation and numerical simulation methods. Force wave activities, including excitation sources, wave characteristics, and physical processes. Although typhoon gravity waves are very important to global atmospheric circulation, current observational instruments are not able to quantify typhoon gravity waves at sufficient time and spatial resolution. Due to the adverse weather conditions during typhoons and the limitations of observational equipment, existing views are available. The characteristics of typhoon gravity waves can not be accurately measured by measuring equipment such as lidar, airglow imager and satellite. The gravity waves excited by typhoon "dandelion" in 2004 were studied by using the AIRS (Atmospheric Infrared Sounder) detector and the Weather Re-search and Forecasting (WRF) model. The typhoon was closed in late June 2004. In order to further explore the typhoon gravity, we analyzed the brightness temperature of the 4.3 micron band of the AIRS detector and found that there is a semi-circular gravity wave structure over Taiwan with a horizontal range of 100-400 kilometers. The model reproduces the main features of typhoon and gravity waves. The horizontal wavelengths of typhoon gravity waves in the model are also in the range of 10 (0-400 km). Analyzing the vertical propagation of gravity waves, it is found that gravity waves propagate mainly upward and eastward in the stratosphere, while most westward propagating gravity waves are filtered out by the background wind field. Because prevailing winds prevent the upward propagation of mountain waves, there are few examples of detecting and studying mountain waves in summer in low latitudes. This paper will study the upward propagation of mountain waves produced by typhoon "dandelion" in 2004 over Taiwan Island (July 1-3, 2004). With the gravity wave information simulated by the WRF-FLAT model, we find that the momentum flux of the mountain wave excited by a typhoon passing through the Central Mountains of Taiwan accounts for about 50% of the total momentum flux of the tropospheric gravity wave, and the dominant direction of the mountain wave is perpendicular to the Central Mountains. It is found that mountain waves can be excited both before and after typhoon landfall, but only before typhoon landfall can mountain waves propagate upward to the stratosphere, because before typhoon landfall, both the troposphere and stratosphere are westward background wind fields, which can not form a barrier to mountain wave propagation. Zero Wind Layer. Since dozens of typhoons or tropical cyclones land in the Pacific each year, it is important to study the propagation of these tropical Cyclone-Related mountain waves. Based on the e-Model, a high-precision global atmospheric circulation model (model accuracy ~0.25 degrees) has been developed to analyze mesoscale atmospheric activities. The model captures mesoscale activities, such as tropical cyclone events in the eastern Australian sea area (167 degrees E, 20 degrees S), and a semi-circular gravity wave structure has been found above. To explore the coupling between global and local models, and to test the necessity of analysing gravity waves with more accurate atmospheric circulation models, we designed a scaling method, which uses the output data of WACCM model to drive the WRF model to simulate the excitation process of tropical cyclone gravity waves. The local climate model used in this paper is the WRF 3.6.1 model developed by NCAR. By comparing the results of the WACCM model with high accuracy and the WRF model with the same horizontal resolution (25 km), we found that the two models both produced approximately structured semi-circular tropical cyclone gravity waves at similar locations. A set of WRF models with different resolutions (25 km, 15 km, 10 km and 4 km) were designed to test the sensitivity of tropical cyclone gravity waves to the horizontal resolution of the model. Although all resolution models can resolve the structure of semi-circular gravity waves, the resolution is higher. At the same time, the effects of convection parameterization and convection analysis on the excitation of tropical cyclone gravity waves are also explored. It is found that the gravity waves excited by analytical convection method and convection parameterization method have little difference at the resolution of 4 km. As we all know, this is the first time that a mesoscale global circulation model is used to study tropical cyclone gravity waves.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:P444
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉曉;徐寄遙;;重力波與不同背景風(fēng)場之間的非線性相互作用[J];自然科學(xué)進(jìn)展;2006年11期
2 余志豪;重力波淺談[J];氣象;1980年11期
3 吳津生,王宗皓,董雙林;全球資料分析中重力波的重要性[J];氣象學(xué)報;1982年02期
4 覃衛(wèi)堅;壽紹文;王詠青;;大氣對流層重力波研究進(jìn)展[J];氣象科技;2013年05期
5 王詠梅,王英鑒,徐寄遙;非線性重力波對中高層氫氧大氣的影響[J];中國科學(xué)(A輯);2000年S1期
6 丁鋒,萬衛(wèi)星,袁洪;耗散大氣中風(fēng)場對內(nèi)重力波傳播的影響[J];空間科學(xué)學(xué)報;2000年02期
7 王詠梅,徐寄遙,王英鑒;對流層上傳重力波的非線性演化[J];地球物理學(xué)報;2001年02期
8 丁鋒,萬衛(wèi)星,袁洪;耗散大氣中水平不均勻風(fēng)場對內(nèi)重力波傳播的影響[J];地球物理學(xué)報;2001年05期
9 岳顯昌,易帆;下行重力波波包在可壓大氣中的傳播[J];空間科學(xué)學(xué)報;2001年01期
10 張紹東,易帆,熊東輝;三維球坐標(biāo)系下重力波波包非線性傳播過程的數(shù)值研究[J];空間科學(xué)學(xué)報;2001年02期
相關(guān)會議論文 前10條
1 丁鋒;萬衛(wèi)星;袁洪;;重力波風(fēng)場濾波現(xiàn)象的射線跟蹤研究[A];第九屆全國日地空間物理學(xué)術(shù)討論會論文摘要集[C];2000年
2 何裕金;易帆;;大氣重力波觀測的運動學(xué)檢驗[A];第十屆全國日地空間物理學(xué)術(shù)討論會論文摘要集[C];2003年
3 安英玉;;重力波特征的雷達(dá)觀測與分析[A];第26屆中國氣象學(xué)會年會人工影響天氣與大氣物理學(xué)分會場論文集[C];2009年
4 安英玉;張云峰;張劍俠;;初春一次具有明顯重力波特征的雷達(dá)觀測與分析[A];第27屆中國氣象學(xué)會年會大氣物理學(xué)與大氣環(huán)境分會場論文集[C];2010年
5 馬蘭夢;張紹東;;對流層及低平流層重力波源譜的分析[A];中國地球物理學(xué)會第二十七屆年會論文集[C];2011年
6 岳顯昌;易帆;;有限振幅重力波在可壓大氣中的非線性傳播[A];第十屆全國日地空間物理學(xué)術(shù)討論會論文摘要集[C];2003年
7 黃春明;張紹東;易帆;;波狀擾動激發(fā)重力波波包的能量轉(zhuǎn)換特性研究[A];第十屆全國日地空間物理學(xué)術(shù)討論會論文摘要集[C];2003年
8 徐寄遙;;二維大氣光化學(xué)-動力學(xué)耦合的重力波模式[A];第十一屆全國日地空間物理學(xué)術(shù)討論會論文摘要集[C];2005年
9 劉曉;徐寄遙;馬瑞平;;時間分裂法在重力波非線性傳播數(shù)值模擬中的應(yīng)用[A];第十一屆全國日地空間物理學(xué)術(shù)討論會論文摘要集[C];2005年
10 涂翠;胡雄;;大氣重力波成像觀測事件分析[A];第十四屆全國日地空間物理學(xué)術(shù)研討會論文集[C];2011年
相關(guān)重要報紙文章 前2條
1 單久;當(dāng)心氣象官能癥[N];人民政協(xié)報;2002年
2 南京醫(yī)科大學(xué)公共衛(wèi)生學(xué)院教授 姜允申;氣象官能癥[N];健康報;2002年
相關(guān)博士學(xué)位論文 前9條
1 丁鋒;背景風(fēng)場影響下大氣重力波的傳播特性研究[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2001年
2 丁霞;對流激發(fā)重力波及波流相互作用研究[D];武漢大學(xué);2011年
3 吳建飛;熱帶氣旋重力波的激發(fā)和傳播機制研究[D];中國科學(xué)技術(shù)大學(xué);2016年
4 吳少平;中高層大氣中三維重力波非線性傳播的數(shù)值研究[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2002年
5 劉曉;重力波非線性傳播及其與背景風(fēng)場和潮汐相互作用的模擬研究[D];中國科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2007年
6 涂翠;全天空大氣重力波成像儀研究[D];中國科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2011年
7 馬蘭夢;低層大氣重力波源譜的無線電探空儀觀測研究[D];武漢大學(xué);2012年
8 王詠梅;氣輝的非線性重力波研究及臭氧總量探測儀的研制[D];中國科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2003年
9 唐怡環(huán);基于全天空OH氣輝成像的中間層頂大氣重力波動量通量特性研究[D];中國科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 汪亞沖;辨明大洋海嘯于中性粘滯大氣層的擾動響應(yīng)分析[D];南京航空航天大學(xué);2014年
2 魏棟;重力波過程中平流層對流層交換的研究[D];蘭州大學(xué);2015年
3 宮明曉;夏季華南地區(qū)深對流活動對平流層大氣重力波的影響研究[D];中國海洋大學(xué);2015年
4 余文寶;大氣重力波的數(shù)值模擬和波譜分析[D];中國科學(xué)技術(shù)大學(xué);2009年
5 王永;重力波非線性相互作用和暴雨[D];南京信息工程大學(xué);2005年
6 李曉青;渤海南部次重力波混合的初步研究[D];中國海洋大學(xué);2006年
7 王雪蓮;利用高分辨探空資料分析熱帶下平流層重力波活動[D];南京信息工程大學(xué);2006年
8 張靈杰;青藏高原上空重力波的觀測和模擬分析[D];中國氣象科學(xué)研究院;2010年
9 陳薇;中層風(fēng)切變對海嘯所引發(fā)的大氣重力波之傳播特性研究[D];南京航空航天大學(xué);2013年
10 陳操;中層大氣重力波的瑞利激光雷達(dá)初步研究[D];中國科學(xué)技術(shù)大學(xué);2010年
,本文編號:2217983
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2217983.html