天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

脂肪酶高產菌的選育、酶的純化和表征以及兩種誘導方式產酶的機理研究

發(fā)布時間:2018-09-01 17:40
【摘要】:脂肪酶是一種既可催化水解反應又可催化合成反應的生物催化劑。因微生物脂肪酶的產量高,便于基因操作,生產無季節(jié)波動等原因,比植物和動物來源的脂肪酶的應用更為廣泛。本研究依靠羅丹明B橄欖油初篩培養(yǎng)基從5份土樣中篩選到16株細菌和16株真菌。通過測定發(fā)酵液酶活和專一性,對菌株進行復篩,并利用SHERLOCK(?)全自動微生物鑒定系統(tǒng)、26-28S rDNA或ITS序列測定等方法進行鑒定。復篩出7株產酶較優(yōu)菌,其中Pseudomonas sp. B1-1、 Acinetobacter sp. B1-2、Acinetobacter sp. B5-1、Trichosporon sp. F1-2為sn-1(3)位專一性,Staphylococcus sp. B2-1、Acinetobacter sp. B3-8和Galactomyces candidum F1-1無專一性。所有分離菌中T. sp. F1-2的酶活力最高,因此選為重點研究對象。系統(tǒng)發(fā)育分析顯示其與T. cacaoliposimilis和T. laibachii的進化關系最近。研究發(fā)現,T. sp. F1-2的胞外比酶活高于胞內,所以更有利于純化。通過50%飽和度的硫酸銨沉淀、8000-14000 Da透析和DEAE-sepharose FF弱陰離子交換柱層析(pH 8.3)的純化步驟,將T. sp F1-2脂肪酶純化了3.96倍,比酶活達到223.13 U/mmg,經過SDS-PAGE分析,測得其分子量為32.6 kDa。本論文詳細研究了T. spF1-2脂肪酶的性質。該酶能長期耐受的最高溫度為45℃,短期最適反應溫度為50℃,其最適保藏pH范圍為7.0~9.0,最適反應pH為8.0。該酶具有sn-1(3)位專一性。其對底物的鏈長也具有明顯的選擇性,最優(yōu)的底物是辛酸酯;該酶在Na+、K+、Ca2+、Mg2+和M112+等金屬離子中酶活穩(wěn)定性較好,Zn2+是其最強的酶活抑制劑。該酶對各種類型的表面活性劑都很敏感,但對非離子型表面活性劑的耐受性稍好于陰離子表面活性劑。該酶對多種有機溶劑都表現出非常突出的耐受性,乙醚、二氯甲烷、甲苯和正己烷還能一定程度上提升其酶活,其對強極性試劑丙三醇、二甲基亞砜和甲醇的高耐受性在脂肪酶中較少見。深入研究了兩種誘導方式,即外加誘導油和自身合成油脂分別為產酶誘導物。當添加誘導油發(fā)酵時,菌體會轉運誘導油到胞內,形成球狀的脂質體,并且在轉運前先將誘導油乳化成極小的油滴,以便于轉運。低濃度葡萄糖發(fā)酵時,由于第一碳源很快耗盡,轉運在發(fā)酵24 h時已經很顯著。高濃度葡萄糖發(fā)酵時,雖然并不缺乏葡萄糖,也會在稍晚于低濃度發(fā)酵一段時間后開始快速轉運油脂,形成大量脂質體,這很可能便是高糖發(fā)酵時產酶仍維持高水平的原因。經過脂肪酸組成分析確認,誘導油發(fā)酵時,胞內脂質體的脂肪酸組成與誘導油一致,確系來自胞外轉運,這與葡萄糖的初始濃度無關。當不添加誘導油發(fā)酵時,該菌仍會通過轉化葡萄糖形成較多的脂質體。由于合成脂類需要脂肪酶參與,且合成后積累在體內又成了自產的誘導油,進一步促進脂肪酶的生成,因此,即使不添加誘導油,該菌也能生產一定量的脂肪酶。該菌自產的脂類主要含五種脂肪酸:肉豆蔻酸、棕櫚酸、硬脂酸、油酸和亞油酸。降低發(fā)酵培養(yǎng)基中的氮源濃度,有利于油脂積累,且會影響脂肪酸的組成,使得飽和脂肪酸的含量增加,不飽和脂肪酸的含量減少。對比兩種誘導途徑,直接添加誘導油發(fā)酵產酶的效率要高于自身產油誘導的效率,且采用前種發(fā)酵時,從種子培養(yǎng)就開始添加誘導油會顯著提高產酶量,而對于后種發(fā)酵,種子培養(yǎng)基中添加油并不會提高胞外產酶。生產能力偏低是限制T. sp F1-2實現工業(yè)化生產的主要原因。于是利用常壓室溫等離子體對野生菌進行了誘變處理,并建立了96孔板培養(yǎng)結合對硝基苯酚棕櫚酸酯法測定酶活力的高通量篩選方法,實現了60個突變菌株的初篩。以酶活力為篩選指標時,突變率和正突變率分別為51.7%和28.3%。8株初篩菌株的搖瓶發(fā)酵結果顯示,A13和A5的產酶提高最顯著,培養(yǎng)96h后分別比野生菌增加2.64倍和1.54倍,且兩個突變菌株的遺傳穩(wěn)定性良好。進一步的對比研究發(fā)現,突變菌株A13相較野生菌的最大優(yōu)勢在于提前24 h便能達到最高產酶量。本論文還利用商業(yè)化酶制劑研究了脂肪酶的兩種重要特性,位置專一性和;w移。脂肪酶的位置專一性在結構酯的合成和油脂改性中具有重要意義。由于水體系和非水體系的差異,傳統(tǒng)的水解判定法得出的專一性與該酶在合成反應中的表現可能并不一致。于是建立了利用月桂酸和山茶油的酸解反應來直接評估酶在無溶劑體系中位置專一性的方法。利用此方法,Lipozyme RM IM、L02、L03和L04被鑒定為sn-1(3)位專一性,L01為弱專一性,Novozym 435近似無專一性。通過替換酶的底物,模型反應的可預測性得到驗證。根據酸解法和水解法結果的對比分析,兩種條件下酶的位置專一性通常是相同的,除了易受到溶劑體系影響的Novozym 435。因此,新方法能夠避免水解判定結果在合成反應中應用的局限性。除了酸解反應模型,還建立了一個酯交換反應模型來研究酰基遷移的影響因素。模型反應的底物為等摩爾量的三月桂酸甘油酯和1,3-棕櫚酸-2-油酸甘油酯,三種固定化脂肪酶參與了此反應。通過測定甘油三酯的組成和脂肪酸的分布來檢測sn-1(3)位的酯交換和sn-2位的;w移。固定化于聚丙烯的Rhizopus oryzae脂肪酶表現出非常嚴格的sn-1(3)位專一性,2位發(fā)生的改變非常小。而固定化于二氧化硅的Thermomyces lanuginosus脂肪酶(Lipozyme(?) TLIM)能在24 h內完成完全的隨機化。固定化于聚丙烯的T. lanuginosus脂肪酶能催化2位發(fā)生中等程度的改變。因此,T. lanuginosus脂肪酶和二氧化硅會促進脂肪酸分布的隨機化,而R. oryzae脂肪酶和聚丙烯則不會。高水分活度促進水解因此會增加不完整甘油酯的濃度,但同時也會抑制這些中間產物的的;w移,最后的結果是,當酯交換率的程度相同時,不同水分活度下2位的;w移沒有顯著差異,而低水分活度的主要優(yōu)勢是能保證甘油三酯的產量。
[Abstract]:Lipase is a kind of biocatalyst which can catalyze both hydrolysis and synthesis reactions. Microbial lipase is more widely used than plant and animal lipase because of its high yield, easy gene manipulation and no seasonal fluctuation in production. This study relied on Rhodamine B olive oil primary screening medium to screen five soil samples. Sixteen strains of bacteria and 16 fungi were screened by determining enzyme activity and specificity of fermentation broth, and identified by SHERLOCK (?) automatic microbial identification system, 26-28S rDNA or ITS sequencing. Seven strains of bacteria with better enzyme production were screened out, including Pseudomonas sp.B1-1, Acinetobacter sp.B1-2, Acinetobacter sp.B5-1, Tri. Chosporon sp.F1-2 is sn-1(3) site specific, Staphylococcus sp.B2-1, Acinetobacter sp.B3-8 and Galactomyces candidum F1-1 are not. T.sp.F1-2 has the highest enzyme activity in all isolates, so it is selected as the key research object. Phylogenetic analysis shows that it has the closest evolutionary relationship with T.caoliposimilis and T.baclaihii. T.sp.F1-2 lipase was purified by 50% ammonium sulfate precipitation, 8000-14000 Da dialysis and DEAE-sepharose FF weak anion exchange column chromatography (pH 8.3). The specific activity of T.sp.F1-2 lipase was 3.96 times and 223.13 U/mmg, respectively. The molecular weight of T.spF1-2 lipase was 32.6 kDa.The properties of T.spF1-2 lipase were studied in detail in this paper.The optimum temperature for long-term tolerance of T.spF1-2 lipase was 45, the optimum reaction temperature was 50, the optimum preservation pH ranged from 7.0 to 9.0, and the optimum reaction pH was 8.0. Zinc 2+ is the strongest inhibitor of the enzyme activity. The enzyme is sensitive to various types of surfactants, but has a slightly better tolerance to nonionic surfactants than anionic surfactants. The enzyme exhibits good stability in various organic solvents. Ethyl ether, dichloromethane, toluene and n-hexane can also enhance their enzyme activity to a certain extent, and their high tolerance to strong polar reagents glycerol, dimethyl sulfoxide and methanol is rare in lipase. Two induction methods, i.e. external induction oil and self-synthesized oil, are studied in depth, which are enzyme-producing inducers respectively. In low concentration glucose fermentation, the first carbon source is quickly exhausted, and the translocation is already significant at 24 h of fermentation. Lack of glucose also causes the rapid translocation of lipids and the formation of a large number of liposomes after a period of fermentation at a later time than at a lower concentration, which may be the reason why enzyme production remains high during high glucose fermentation. This is not related to the initial concentration of glucose. When induced oil is not added, the bacteria can still form more liposomes by converting glucose. Because lipase is involved in the synthesis of lipids and accumulated in the body after synthesis, it becomes a self-produced inducing oil, which further promotes the production of lipase, even without the addition of inducing oil. The lipids produced by the bacteria mainly contain five kinds of fatty acids: myristic acid, palmitic acid, stearic acid, oleic acid and linoleic acid. Reducing the concentration of nitrogen source in the fermentation medium is beneficial to the accumulation of lipids, and will affect the composition of fatty acids, which will increase the content of saturated fatty acids and decrease the content of unsaturated fatty acids. Compared with the two induction pathways, the efficiency of enzyme production by direct addition of induction oil was higher than that by self-induction. Adding induction oil from the beginning of seed culture could significantly increase the enzyme production by using pre-seed fermentation, but for post-seed fermentation, adding oil to seed medium would not increase the extracellular enzyme production. The main reason for industrialized production of T.sp F1-2 was that the wild bacteria were mutagenized by atmospheric pressure room temperature plasma and a high throughput screening method was established by 96-well plate culture combined with p-nitrophenol palmitate method for the determination of enzyme activity. The results of shaking flask fermentation showed that the enzyme production of A13 and A5 increased by 2.64 times and 1.54 times respectively after 96 h culture, and the genetic stability of the two mutant strains was good. Two important properties of lipase, location specificity and acyl migration, were studied by commercial enzyme preparations. The location specificity of lipase is very important in the synthesis of structural esters and the modification of lipids. The specificity of Lipozyme RM IM, L02, L03 and L04 was identified as sn-1(3) site specificity, L01 as weak specificity, Novozym 435 as position specificity by acid hydrolysis of lauric acid and Camellia oil. The predictability of the model reaction was validated by substituting the substrates of the enzymes. According to the comparative analysis of the results of acid hydrolysis and hydrolysis, the site specificity of the enzymes under the two conditions is usually the same, except for Novozym 435, which is susceptible to the influence of the solvent system. Limitations of application. In addition to the acidolysis model, a transesterification model was established to study the factors affecting the migration of acyl groups. The substrate of the model reaction was equal molar amounts of glycerol laurate and 1,3-palmitic acid-2-oleic acid glycerol ester. Three immobilized lipases participated in the reaction. The composition of triglycerides was determined. Fatty acid distribution was used to detect the transesterification of sn-1(3) and the migration of acyl groups at sn-2. The immobilized polypropylene-based Rhizopus oryzae lipase showed very strict sn-1(3) site specificity, with very small changes in the two sites. The immobilized silica-based Thermomyces lanuginosus lipase (Lipozyme (?) TLIM) could be completed within 24 hours. Complete randomization. T. lanuginosus lipase immobilized on polypropylene catalyzes moderate changes in the two sites. Therefore, T. lanuginosus lipase and silica promote randomization of fatty acid distribution, while R. oryzae lipase and polypropylene do not. High water activity promotes hydrolysis and therefore increases the concentration of incomplete glycerides. But it also inhibits the acyl migration of these intermediates. The final result is that when the degree of transesterification is the same, there is no significant difference between the two acyl migration under different water activity, and the main advantage of low water activity is to ensure the yield of triglycerides.
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TQ925;Q814

【相似文獻】

相關期刊論文 前10條

1 董宏偉,孫謐,王躍軍,于建生;海洋微生物低溫堿性脂肪酶的純化與性質研究[J];海洋與湖沼;2004年04期

2 沈永強;劉慈俊;張景六;王麗雯;;阿氏假囊酵母(Eremothecium ashbyii)Du-32脂肪酶的研究[J];微生物學報;1974年01期

3 施巧琴;堿性脂肪酶的研究——Ⅰ.菌株的分離和篩選[J];微生物學通報;1981年03期

4 徐萬新,王俊國,宋玉卿;微生物胞外脂肪酶性質的研究[J];吉林糧食高等?茖W校學報;2000年01期

5 李品周;施碧紅;施巧琴;;脂肪酶穩(wěn)定性研究[J];化學與生物工程;2006年12期

6 閻金勇;楊江科;閆云君;;Galactomyces geotrichum Y25產脂肪酶條件的優(yōu)化[J];生物加工過程;2007年02期

7 雷啟義;鄒凱;周江菊;張文華;;脂肪酶活力測定方法及其比較[J];凱里學院學報;2011年06期

8 韓穎;孟憲梅;;堿性脂肪酶的分子生物學研究進展[J];安徽農業(yè)科學;2012年27期

9 王歡;何臘平;周換景;張義明;李翠芹;陶菡;;脂肪酶活力測定方法及其在篩選產脂肪酶微生物中的應用[J];生物技術通報;2013年01期

10 王美英;徐家立;;白地霉一新變種的鑒定及其脂肪酶的研究[J];微生物學報;1989年01期

相關會議論文 前5條

1 閆麗娟;賀勝英;唐湘華;李俊俊;黃遵錫;;黑曲霉NJY-1脂肪酶基因的克隆及在畢赤酵母中的表達[A];飼用酶制劑開發(fā)與應用技術交流研討會論文集[C];2010年

2 鄭毅;吳朝娟;吳松剛;;脂肪酶活力檢測方法的研究[A];2004年全國生物技術學術研討會論文集[C];2004年

3 劉勝浩;林學政;劉晨臨;黃曉航;;南極細菌低溫脂肪酶在大腸桿菌中的高效表達[A];中國海洋學會海洋生物工程專業(yè)委員會2005年學術年會論文集[C];2005年

4 肖海群;段學輝;;脂肪酶產生菌的篩選及其產酶特性研究[A];2006中國微生物學會第九次全國會員代表大會暨學術年會論文摘要集[C];2006年

5 閆云君;蔡勇;楊江科;;基于易錯POR技術的短小芽胞桿菌(Bacillus pumilus)脂肪酶YZO2的定向進化[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國科協年會論文集(一)[C];2007年

相關博士學位論文 前10條

1 孟梟;脂肪酶的結構修飾、分子識別機理解析及性能強化[D];浙江大學;2014年

2 曹俊;結核分枝桿菌脂肪酶的功能研究[D];中國農業(yè)科學院;2015年

3 曹茜;脂肪酶高產菌的選育、酶的純化和表征以及兩種誘導方式產酶的機理研究[D];浙江大學;2016年

4 高蓓;變形桿菌屬脂肪酶的篩選、表征及基于理性設計的改造[D];華東理工大學;2010年

5 彭仁;耐有機溶劑脂肪酶的篩選、重組表達及其催化特性研究[D];華東理工大學;2010年

6 舒正玉;黑曲霉脂肪酶的酶學性質、基因克隆與表達及結構預測[D];華中科技大學;2007年

7 張愛軍;熒光假單胞菌脂肪酶的克隆表達、酶學性質及其在手性拆分中的應用研究[D];吉林大學;2008年

8 苑博華;伯克霍爾德菌的篩選、鑒定及其發(fā)酵產低溫脂肪酶的研究[D];江南大學;2010年

9 房耀維;Proteus Vulgaris T6脂肪酶分子定向進化研究[D];南京農業(yè)大學;2007年

10 賈彬;洋蔥伯克霍爾德菌的篩選、鑒定及其脂肪酶基因的高效表達[D];華中科技大學;2010年

相關碩士學位論文 前10條

1 王倩;脂肪酶SMG1的底物識別和熱穩(wěn)定性機制研究[D];華南理工大學;2015年

2 杜萍萍;產脂肪酶菌株Serratia marcescens Lipa1318的分離鑒定、發(fā)酵條件優(yōu)化及其脂肪酶基因的克隆表達[D];河北農業(yè)大學;2015年

3 林紅;基于基因組DNA信息分析挖掘新型脂肪酶[D];福建師范大學;2015年

4 王作鎮(zhèn);依賴伴侶蛋白折疊的脂肪酶的細胞表面展示系統(tǒng)的初步構建[D];福建師范大學;2015年

5 劉海余;伯克霍爾德菌的篩選、脂肪酶基因的克隆表達及酶學性質研究[D];廣西大學;2015年

6 毛愷;脂肪酶產生菌F.Oxysporum_SHM的分離鑒定及其發(fā)酵條件優(yōu)化[D];上海大學;2015年

7 毛迪;一種嗜熱脂肪酶的表達、表征及機理研究[D];北京化工大學;2015年

8 李文霞;脂肪酶Candida sp.99-125催化合成棉籽糖酯[D];北京化工大學;2015年

9 張悅;嗜冷桿菌低溫脂肪酶分離純化及表征[D];大連理工大學;2015年

10 朱婧;稻米脂肪酶基因工程菌的構建及性質研究[D];長沙理工大學;2014年

,

本文編號:2217903

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2217903.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶6aac8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产一区二区三区午夜精品| 国产又粗又猛又爽又黄的文字| 熟女体下毛荫荫黑森林自拍| 在线观看欧美视频一区| 国产成人精品午夜福利av免费| 成在线人免费视频一区二区| 国产又色又爽又黄的精品视频| 欧美偷拍一区二区三区四区| 国产精品伦一区二区三区四季| 欧美国产精品区一区二区三区| 久久免费精品拍拍一区二区| 亚洲精品av少妇在线观看| 成年女人午夜在线视频| 久久福利视频在线观看| 亚洲熟女熟妇乱色一区| 欧美日韩三区在线观看| 久久亚洲国产视频三级黄| 亚洲精品蜜桃在线观看| 国产男女激情在线视频| 熟女高潮一区二区三区| 日韩午夜福利高清在线观看| 99久免费精品视频在线观| 91插插插外国一区二区婷婷| 欧美精品女同一区二区| 99精品国产一区二区青青 | 中文字幕人妻一区二区免费 | 黄片三级免费在线观看| 国产精品国三级国产专不卡| 国产精品熟女在线视频| 亚洲午夜av久久久精品| 亚洲欧美日韩在线中文字幕| 91蜜臀精品一区二区三区| 午夜国产精品国自产拍av| 国产精品一区欧美二区| 一区二区三区欧美高清| 97精品人妻一区二区三区麻豆| 精品一区二区三区乱码中文| 久久精品久久精品中文字幕| 亚洲伦片免费偷拍一区| 国产精品成人一区二区三区夜夜夜| 日本少妇中文字幕不卡视频|