大氣壓沿面介質(zhì)阻擋放電等離子體特性研究
[Abstract]:Surface Dielectric Barrier Discharge (SDBD) plasma generation technology can produce a large and uniform plasma layer on the dielectric surface because of its small discharge space constraints, simple structure and fast dynamic response, avoiding the generation of arcs, high power density and variety. Various active particles, such as ozone (O3), oxygen (O), hydrogen peroxide (H2O2), hydroxyl (OH) and their excited state particles, have been widely used in aerodynamics, biomedicine, environmental protection and other fields, and have been the research hotspot in recent years. In the exploratory stage, the factors affecting the discharge characteristics are not regularly understood. Therefore, it is of great theoretical and engineering significance to study the characteristics of dielectric barrier discharge along the surface with different parameters for promoting its application. Based on the physical process and experimental results of discharge, the equivalent circuit models of lumped parameters of plasma actuator under the action of sine wave alternating current power supply and nanosecond pulse power supply are established respectively. The experiments and circuit simulation are carried out. True, the study of atmospheric surface dielectric barrier discharge mainly includes the following contents: The basic characteristics of surface dielectric barrier discharge under the action of nanosecond pulse power supply are systematically studied, and the electrode symmetry, back electrode packaging and symmetrical electrode power supply under the action of different repetition frequency of nanosecond pulse power supply are further analyzed. The effects of wiring modes (HV-GND and GND-HV) on the voltage-ampere characteristics, deposition energy, transfer charge, N2 (C3nu_B3_g) and N2 + (B2_u +X2_g +, 0-0, 391.4 nm) spectral intensity, N2 (C3_u) oscillation temperature and rotation temperature of surface dielectric barrier discharge (DBD) were investigated. Compared with the asymmetrical exciter, the symmetrical exciter has a higher discharge starting time, higher current value, deposition energy, transmission charge, N2 (C3_u) vibration temperature and rotational temperature, and emission spectrum intensity. Because of the polarity effect, the discharge initiation time of HV-GND is later than that of GND-HV, but it has higher peak current, deposition energy, transmission charge, N2 (C3_u) vibration temperature and rotation temperature. The voltage-ampere characteristics, discharge power and transmission charge, N2 (C3_u_B3_g) and N2 + (B2_U+X2_g+, 0-0, 391.4 nm) spectral line strength, N2 (C3nu) oscillation temperature and rotational temperature were investigated under sinusoidal wave power supply. The main conclusions are as follows: compared with the plasma characteristics of SDBD under nanosecond pulse power supply, the rotational temperature of N2 (C3nu) corresponding to SDBD under sinusoidal wave is higher, but the vibrational temperature of N2 (C3nu) is lower, and the discharge current amplitude is much lower. Under the same conditions, the emission spectra of nanosecond pulsed discharge current are the same. The increase of frequency is beneficial to the enhancement of discharge. The electrode symmetry of the actuator under sinusoidal wave power supply is good. The influence of back electrode packaging on discharge parameters is consistent with that of nanosecond pulsed discharge power supply. The parameters of SDBD discharge plasma corresponding to GND-HV power supply have little change. Based on the experimental platform of dielectric barrier discharge along the surface under the action of sinusoidal wave power supply, the voltammetric characteristics, discharge image, emission spectrum characteristics, N2 (C3_u) vibration temperature and rotational temperature, as well as the excitation and sum of nitrogen molecule are studied. The spatial distributions of N2 (C3_u_B3_g, 0-0, 337.1 nm), N2 + (B2_u +X2_g+, 0-0, 391.4 nm:) and Ar I (2P1_1S2, 750.39 nm) emission line strength, N2 (C3_u) vibration temperature and rotation temperature are further analyzed. The results show that the discharge intensity and uniformity increase obviously after the introduction of argon, a stable large area discharge plasma is produced, and the rotational temperature of N2 (C3_u) increases, which is conducive to increasing momentum transfer efficiency and airflow induced velocity. The dynamic temperature is the strongest at the center and decreases with the decrease of the distance to the edge of the plate; the change of N2 (C3_u) vibration temperature is opposite to the rotational temperature. In addition, with the increase of argon flow rate, the discharge intensity increases first and then decreases, and the rotational temperature of N2 (C3_u) increases. With the increase of tube spacing, discharge decreases, emission spectrum intensity, discharge power, electron excitation temperature and N2 (C3_u) rotation temperature decrease significantly, but N2 (C3_u) vibration temperature increases; with the increase of voltage amplitude and frequency, spectral line intensity increases, N2 (C_u) vibration temperature increases. 3_u) rotational temperature, discharge power and electron excitation temperature increase, but the effect on N2 (C3_u) vibrational temperature is relatively small. Based on the physical process of discharge and experimental results, plasma ionization under the action of sinusoidal wave power supply and nanosecond pulse power supply is established respectively. The lumped parameter equivalent circuit model of the daughter exciter is used to estimate the plasma geometry size by taking high-speed discharge images. With the help of matlab/simulink software and simultaneous Boltzmann equation solver, Kirchhoff voltage equation and electron continuity equation are solved to estimate the current, average electron density and electron temperature under the action of two power sources respectively. The main conclusions are as follows: using variable resistance to represent the process of plasma discharge, reducing the switching function, realizing the calculation of electron density and resistance, facilitating the impedance matching of the circuit, improving the efficiency of power supply. The simulation results show that the maximum average electron density and temperature can reach 1.01 *1016m-3 and 6.1eV, the minimum resistance is 0.5M, the capacitance reactance is 8.99G. The capacitance reactance decreases nonlinearly with the increase of current density, and the electron temperature increases slightly. The electron temperature and electron density are 2.7 *1018m-3 and 8.5eV, respectively, which are higher than those of the sinusoidal power supply. The slope of the power supply has an important effect on the discharge. With the increase of the voltage rise rate, the current of the first discharge increases, the discharge time is advanced, but the corresponding second discharge current is slightly reduced, and the decrease rate increases correspondingly with the second discharge current. The current of the first discharge decreases slightly when the amplitude of secondary discharge current increases.
【學位授予單位】:山東大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:O461;O53
【相似文獻】
相關(guān)期刊論文 前10條
1 尹淑慧;;電暈放電與介質(zhì)阻擋放電等離子體簡介[J];現(xiàn)代物理知識;2006年02期
2 李鋼;李軼明;徐燕驥;張翼;李漢明;聶超群;朱俊強;;介質(zhì)阻擋放電等離子體對近壁區(qū)流場的控制的實驗研究[J];物理學報;2009年06期
3 高樹香 ,陳文靜;混合氣體放電等離子體電子溫度的理論計算[J];電子器件;1987年01期
4 陳遠喜;劉祖黎;;氣體放電等離子體參量診斷實驗[J];物理實驗;1993年02期
5 李漢明;李英駿;毛靈濤;李鋼;張翼;劉峰;王芳;聶超群;李玉同;張杰;;絕緣阻擋放電等離子體弦向溫度分布研究[J];科技導報;2007年18期
6 譚笑;盧佳敏;劉欣宇;楊勇;劉大偉;盧新培;;高電壓放電產(chǎn)生等離子體在人工降雨中的應(yīng)用[J];高電壓技術(shù);2012年12期
7 李勁,王澤文,高秋華,李勝利;放電等離子體水處理技術(shù)中的放電問題[J];高電壓技術(shù);1997年02期
8 程鈺鋒;聶萬勝;車學科;;臨近空間介質(zhì)阻擋放電等離子體氣動激勵效果的數(shù)值分析[J];高電壓技術(shù);2011年06期
9 李軍;吳韋韋;宋慧敏;賈敏;金迪;;靜止空氣中重頻脈沖火花放電等離子體的氣動激勵特性[J];高電壓技術(shù);2013年07期
10 盧新培,潘垣,張寒虹;水中脈沖放電等離子體通道特性及氣泡破裂過程[J];物理學報;2002年08期
相關(guān)會議論文 前10條
1 趙書霞;王友年;;射頻感應(yīng)耦合放電等離子體模式跳變的混合模擬[A];第十四屆全國等離子體科學技術(shù)會議暨第五屆中國電推進技術(shù)學術(shù)研討會會議摘要集[C];2009年
2 宋春蓮;張芝濤;楊憲立;陳文艷;;放電等離子體轉(zhuǎn)化秸稈制取單糖的機理[A];中國物理學會第十五屆靜電學術(shù)年會論文集[C];2009年
3 閻克平;金華;;流光放電等離子體在環(huán)保方面的應(yīng)用[A];中國環(huán)境保護優(yōu)秀論文集(2005)(下冊)[C];2005年
4 閆克平;;流光放電等離子體在環(huán)保方面的應(yīng)用[A];第十一屆全國電除塵學術(shù)會議論文集[C];2005年
5 劉睿強;劉悅;Tagra Samir;劉倩;張向東;;低氣壓射頻和脈沖射頻氬氣放電等離子體的比較[A];第十六屆全國等離子體科學技術(shù)會議暨第一屆全國等離子體醫(yī)學研討會會議摘要集[C];2013年
6 林啟富;倪國華;江貽滿;劉衛(wèi);孟月東;;一種新型介質(zhì)阻擋放電等離子體降解水中茜素紅的研究[A];第十六屆全國等離子體科學技術(shù)會議暨第一屆全國等離子體醫(yī)學研討會會議摘要集[C];2013年
7 趙海洋;劉克富;;脈沖放電等離子體污水處理可行性實驗研究[A];上海市照明學會成立30周年慶典暨四直轄市照明科技論壇、長三角照明科技論壇、上海市照明學會2008年年會論文集[C];2008年
8 李傳輝;劉文正;孫光亮;張蓉蓉;;水表面介質(zhì)阻擋放電等離子體生成特性的研究[A];第十六屆全國等離子體科學技術(shù)會議暨第一屆全國等離子體醫(yī)學研討會會議摘要集[C];2013年
9 蒲陸梅;李國琴;伏建明;虎玉森;;輝光放電等離子體對農(nóng)藥毒性的消除作用[A];甘肅省化學會第二十五屆年會、第七屆甘肅省中學化學教學經(jīng)驗交流會論文集[C];2007年
10 張宏;黃青;柯志剛;余增亮;;放電等離子體降解水體微囊藻毒素及其機理研究[A];中國化學會第28屆學術(shù)年會第2分會場摘要集[C];2012年
相關(guān)重要報紙文章 前2條
1 記者 汪永安;科學島發(fā)現(xiàn)藍藻治理新方法[N];安徽日報;2014年
2 王慧敏;復(fù)旦學子實踐創(chuàng)新點亮關(guān)注民生之燈[N];文匯報;2008年
相關(guān)博士學位論文 前10條
1 張婧;甲烷和甲醇在介質(zhì)阻擋放電等離子體中的反應(yīng)[D];大連理工大學;2015年
2 郝玲艷;大氣壓沿面介質(zhì)阻擋放電等離子體特性研究[D];山東大學;2016年
3 薄拯;滑動弧放電等離子體處理揮發(fā)性有機化合物基礎(chǔ)研究[D];浙江大學;2008年
4 呂曉桂;大體積均勻納秒脈沖放電等離子體及制備碳納米顆粒的研究[D];大連理工大學;2011年
5 王鐵成;場地有機物污染土壤的脈沖放電等離子體修復(fù)方法和機理研究[D];大連理工大學;2013年
6 王慧娟;脈沖放電等離子體—流光光催化協(xié)同降解水中典型有機污染物[D];大連理工大學;2007年
7 姜楠;沿面—填充床復(fù)合放電等離子體及其協(xié)同催化降解苯的研究[D];大連理工大學;2014年
8 杜長明;滑動弧放電等離子體降解氣相及液相中有機污染物的研究[D];浙江大學;2006年
9 王達望;新型大氣壓放電等離子體發(fā)生器及其在甲烷偶聯(lián)方面的應(yīng)用研究[D];大連理工大學;2006年
10 王蕾;輝光放電等離子體降解水中有機污染物與還原六價鉻的研究[D];浙江大學;2008年
相關(guān)碩士學位論文 前10條
1 施志勇;脈沖放電等離子體協(xié)同復(fù)合型催化劑去除甲醛的研究[D];江西理工大學;2015年
2 王兆均;脈沖介質(zhì)阻擋放電等離子體處理廢水的研究[D];復(fù)旦大學;2013年
3 廖華;基于介質(zhì)阻擋放電等離子體水處理機理及樣機研究[D];重慶大學;2015年
4 榮少鵬;濕壁式介質(zhì)阻擋放電等離子體對水中磺胺嘧啶的去除研究[D];南京大學;2014年
5 郭賀;脈沖放電等離子體—活性炭聯(lián)合降解水體中有機污染物的研究[D];江蘇大學;2016年
6 黃宏偉;C_2F_6、C_4F_8雙頻電容耦合等離子體特性研究[D];蘇州大學;2010年
7 楊水蛟;氣體放電等離子體在模擬廢水降解中的應(yīng)用研究[D];西北大學;2012年
8 文鳳;大氣壓介質(zhì)質(zhì)阻擋放電等離子體處理印染廢水的研究[D];東華大學;2013年
9 孟諾;沿面—填充床復(fù)合放電等離子體催化降解苯[D];大連理工大學;2010年
10 阮建軍;脈沖放電等離子體治理惡臭廢氣技術(shù)研究[D];浙江大學;2005年
,本文編號:2199725
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2199725.html