全氟辛烷基磺酸與納米氧化鋅對(duì)斑馬魚聯(lián)合毒性效應(yīng)研究
[Abstract]:The toxicity of pollutants to organisms is the focus of attention at present. Perfluorooctane sulfonate (PFOS, C8F17SO3) is a class of persistent organic pollutants, which have liver, nerve, reproductive and developmental toxicity to organisms. Because PFOS is widely used in daily processing products, and in soil The extensive detection of soil, water and organism has caused serious harm to people's health, and its toxicity is also a hot spot in recent years. The nano Zinc Oxide (Nano-ZnO) is a typical nano metal oxide. Its unique chemical properties make it use more and more.NanoZnO to enter the organism through skin and in body. The toxicity of PFOS and Nano-ZnO in the environment is increasing, and the potential coexistence of them in the water is increasing. It is very necessary to explore the compound exposure toxicity of the aquatic organisms and its mechanism of action. This paper studies the combined exposure of PFOS and Nano-ZnO to zebrafish. The effects of developmental toxicity, thyroid toxicity and reproductive toxicity and its toxic mechanism provide a basic study for the emergency treatment of the effects of compound exposure to fish on the toxicity of fish, and provide a scientific basis for the analysis of the ecological risk of pollutant water. According to the results of the acute toxicity test, the LC50 values of 96 h PFOS and Nano-ZnO are 3.502 mg/L and 60 mg, respectively. /L. also designed PFOS and Nano-ZnO effect compound exposure and (P 0.4+Z 50), (P 0.8+Z 50) and (P 1.6+Z 50) composite exposure group for 96 h embryo development toxicity test. The effects of thyroid toxicity, combined toxicity types and possible toxic mechanisms were analyzed. Finally, the effects of equal effect exposure on the reproductive toxicity and offspring embryo quality of zebrafish were investigated using (P 0.05+Z 1.7) (P 0.1+Z 3.4) and (P 0.2+Z6.75) treatment group. The results were as follows: (1) the exposure of PFOS and Nano-ZnO could cause acute toxicity of embryo. After PFOS and Nano-ZnO combined exposure, the acute toxicity of the embryo was enhanced by the addition of.Nano-ZnO, which significantly enhanced the mortality and deformity rate induced by PFOS, and inhibited the hatchability and heart rate of the embryo. Exposure to oxidative stress and cell apoptosis induced by exposure to.Nano-ZnO increased the activation of PFOS to the activity of oxidative stress kinase (SOD, GPx and MDA) and apoptosis enzyme (Caspase-3 and Caspase-9), up regulation of apoptosis related genes (p53, Bax, Bcl-2, caspase-3 and caspase-9), and inhibition of oxidative stress. The expression of gene (SOD1, Cat and GPx1a). The cause of toxicity enhancement after the compound exposure may be due to the unique chemical properties of PFOS, which changes the permeability of the cell membrane, which makes the small size large molecular pollutants (Nano-ZnO) more easily entered into the membrane, and then affects some important enzyme activities and hormone secretion in the body, resulting in the internal residue of Nano-ZnO cells. (2) the developmental toxicity of two species of Nano-ZnO and PFOS increased the developmental toxicity of 14 d in young fish, and (P 0.8+Z 25) and (P 0.8+Z 50) mg/L compound exposure group significantly increased the mortality and malformation rate of young fish, and inhibited the addition of.Nano-ZnO in young fish to PFOS for T3. The content of.Nano-ZnO was significantly enhanced and the expression of TSH beta and TR alpha gene was inhibited significantly by the addition of T4 content, and the expression of TR beta, Deio1, Deio2, NIS and CRH genes was up-regulated, and the expression of TG, TTR gene and protein were inhibited, but the TPO gene surface level was not affected. In the membrane, it interferes with the function of the juvenile thyroid axis, affecting the absorption, synthesis, transportation and binding of the thyroid hormone nuclear receptor, destroying the HPT axis action site, destroying the thyroid hormone balance in the body and causing a series of harm to the growth and development of the young fish, which may be the primary toxicity of PFOS and Nano-ZnO to the hypothyroidism of young fish. (3) complex exposure can increase the number of cumulative deaths in the parent zebrafish, inhibit the growth of body weight and body length, reduce the amount of egg production and egg protein in the embryo, but do not affect the value of the adult gonadal finger, indicating that the compound exposure does not affect the weight of the ovaries and the sperms of the zebrafish. In the compound exposure group, the comet tail distance and micronucleus rate also increase with the increase of exposure concentration, indicating that Nano-ZnO can enhance the damage degree of PFOS to the DNA of zebrafish blood cells. (P 0.1+Z 3.4) and (P0.2+Z 6.75) compound treatment group It can significantly reduce the content of T in the male body and not affect the content of T in the female fish, but the inhibitory effect on the content of E2 in the female fish is obvious, but it has no effect on the E2 content in the male fish, which indicates that the compound exposure affects the secretion of sex hormone in the zebrafish body, and the.Nano-ZnO alone exposure has no significant influence on the expression of the Vtg1 base, but with the PFOS compound storm. After exposure, the expression of Vtg1 gene in the liver tissue of zebrafish was inhibited significantly, and the yolk protein content in the offspring embryos was affected. The compound exposure increased the mortality of the juvenile fish, reduced the fertilization rate and hatchability of the eggs, and had no significant influence on the length and the malformation rate of the offspring. The possible reasons for the enhancement of reproductive toxicity after the compound exposure were the possible reasons for the increase of reproductive toxicity. The presence of Nano-ZnO in the environment may interfere with the developmental toxicity of PFOS to zebrafish, thyroid toxicity and reproductive toxicity, and combined toxicity, and thus contaminate the body. Risk assessment can not only start from the toxicity of a single pollutant, but also consider the interaction trend of compound pollutants, so as to make a reasonable risk assessment and protect the health of the public.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:X171.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周炳;趙美蓉;黃海鳳;;4種農(nóng)藥對(duì)斑馬魚胚胎的毒理研究[J];浙江工業(yè)大學(xué)學(xué)報(bào);2008年02期
2 ;法國科學(xué)家發(fā)現(xiàn)斑馬魚造血干細(xì)胞生成機(jī)理[J];廣西科學(xué)院學(xué)報(bào);2010年01期
3 陳粉麗;張松林;李運(yùn)彩;;斑馬魚胚胎毒理學(xué)研究進(jìn)展[J];湖北農(nóng)業(yè)科學(xué);2010年06期
4 劉在平;張松林;;斑馬魚在環(huán)境保護(hù)中的應(yīng)用[J];中國環(huán)境監(jiān)測(cè);2011年04期
5 王雪;王希敏;劉可春;韓利文;袁延強(qiáng);;斑馬魚胚胎在毒理學(xué)研究中的應(yīng)用[J];山東科學(xué);2011年06期
6 劉麗麗;王健;王海勝;余凱敏;李國超;閆艷春;;斑馬魚轉(zhuǎn)基因平臺(tái)的建立[J];生物技術(shù)通報(bào);2013年10期
7 朱琳,史淑潔;斑馬魚胚胎發(fā)育技術(shù)在毒性評(píng)價(jià)中的應(yīng)用[J];應(yīng)用生態(tài)學(xué)報(bào);2002年02期
8 董武,楊景峰,王思珍,高原,解顏炯,馬國文;二VA英污染引起的特異性下頜短小—斑馬魚下頜形態(tài)學(xué)檢測(cè)[J];內(nèi)蒙古民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年03期
9 蔡翔,王捷,王穎;應(yīng)用胚胎檢測(cè)技術(shù)評(píng)價(jià)氟嗎啉對(duì)斑馬魚胚胎-幼體發(fā)育的影響[J];農(nóng)藥;2005年06期
10 張立鳳;鐘濤;桂永浩;;外源性視黃酸對(duì)斑馬魚心血管系統(tǒng)發(fā)育的影響[J];中國實(shí)驗(yàn)動(dòng)物學(xué)報(bào);2006年02期
相關(guān)會(huì)議論文 前10條
1 馬雯雯;杭曉明;王巍;劉聰;孫野青;;模擬微重力影響斑馬魚胚胎發(fā)育的蛋白質(zhì)組特征[A];“基因、進(jìn)化與生理功能多樣性”海內(nèi)外學(xué)術(shù)研討會(huì)暨中國生理學(xué)會(huì)第七屆比較生理學(xué)學(xué)術(shù)會(huì)議論文摘要[C];2009年
2 張利軍;史慧勤;彭雙清;;基于斑馬魚模式動(dòng)物的阿霉素心臟毒性作用研究[A];2010年全國藥物毒理學(xué)學(xué)術(shù)會(huì)議論文集[C];2010年
3 王晗;;斑馬魚生物鐘調(diào)節(jié)的分子遺傳和基因組機(jī)制[A];2011年全國時(shí)間生物醫(yī)學(xué)學(xué)術(shù)會(huì)議論文集[C];2011年
4 林秀坤;;斑馬魚作為抗腫瘤藥物模型的分子基礎(chǔ)[A];第四屆中國腫瘤大會(huì)中國藥理學(xué)會(huì)腫瘤藥理專業(yè)委員會(huì)分會(huì)場學(xué)術(shù)會(huì)議論文摘要[C];2006年
5 侯佳;桂永浩;張立鳳;王躍祥;宋后燕;鐘濤;;視黃酸缺乏對(duì)斑馬魚胚胎心臟發(fā)育的影響[A];中華醫(yī)學(xué)會(huì)第五次全國兒科中青年學(xué)術(shù)交流大會(huì)論文匯編(上冊(cè))[C];2008年
6 陳錫強(qiáng);韓利文;王希敏;王思鋒;侯海榮;劉可春;;促滲劑氮酮對(duì)斑馬魚胚胎的透皮作用及其毒性影響(英文)[A];2012年中國藥學(xué)大會(huì)暨第十二屆中國藥師周論文集[C];2012年
7 于永利;楊景峰;王思珍;董武;;高殘留農(nóng)藥福美雙對(duì)斑馬魚胚胎體節(jié)以及脊索的影響[A];持久性有機(jī)污染物論壇2010暨第五屆持久性有機(jī)污染物全國學(xué)術(shù)研討會(huì)論文集[C];2010年
8 巴雅斯胡;楊景峰;于永利;王思珍;董武;;高殘留農(nóng)藥代森鋅誘導(dǎo)斑馬魚胚胎脊索變形[A];持久性有機(jī)污染物論壇2011暨第六屆持久性有機(jī)污染物全國學(xué)術(shù)研討會(huì)論文集[C];2011年
9 張利軍;郭家彬;苑曉燕;史慧勤;趙君;束玉磊;彭雙清;;應(yīng)用斑馬魚胚胎和幼魚評(píng)價(jià)布洛芬的心臟毒性[A];2013年(第三屆)中國藥物毒理學(xué)年會(huì)暨藥物非臨床安全性評(píng)價(jià)研究論壇論文摘要[C];2013年
10 朱小山;朱琳;李燕;端正花;;富勒烯(C_(60))對(duì)斑馬魚胚胎發(fā)育毒性的初步研究[A];第三屆全國環(huán)境化學(xué)學(xué)術(shù)大會(huì)論文集[C];2005年
相關(guān)重要報(bào)紙文章 前8條
1 劉妍;美國培育出終生透明的斑馬魚[N];中國漁業(yè)報(bào);2008年
2 本報(bào)記者 滕繼濮;小小斑馬魚 大大有用處[N];科技日?qǐng)?bào);2010年
3 楓葉 編譯;篩選藥物:斑馬魚責(zé)任重大[N];醫(yī)藥經(jīng)濟(jì)報(bào);2012年
4 記者 熊琳暉 通訊員 孫慧;研究斑馬魚揭示器官再生之謎[N];長江日?qǐng)?bào);2013年
5 羅剛 李兵;斑馬魚破譯人類基因的先鋒[N];健康報(bào);2004年
6 記者 李學(xué)梅;斑馬魚為治療白血病提新思路[N];新華每日電訊;2010年
7 本報(bào)記者 許琦敏;靜候那一點(diǎn)流星似的光亮[N];文匯報(bào);2012年
8 本報(bào)記者 許琦敏;劉廷析 “掘?qū)殹卑唏R魚世界[N];文匯報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 管翊閎;核仁因子Def磷酸化修飾調(diào)控細(xì)胞周期和p53降解的研究[D];浙江大學(xué);2015年
2 胡晶瑩;環(huán)境雌激素影響斑馬魚生殖系統(tǒng)發(fā)育機(jī)制的初步研究[D];復(fù)旦大學(xué);2011年
3 趙婷;Karsch-Neugebauer綜合征斑馬魚模型的建立和行為學(xué)觀察[D];復(fù)旦大學(xué);2014年
4 王健;新型斑馬魚模型在研究腫瘤浸潤、轉(zhuǎn)移和血管侵襲機(jī)制中的應(yīng)用[D];山東大學(xué);2015年
5 王明勇;斑馬魚生物鐘基因per2突變體的構(gòu)建及在生物鐘系統(tǒng)中的功能分析[D];蘇州大學(xué);2014年
6 龔璐;p53及其異構(gòu)體△133p53/△113p53在人類細(xì)胞和斑馬魚中的功能及生物學(xué)意義研究[D];浙江大學(xué);2015年
7 郭翠翠;斑馬魚D3b基因結(jié)構(gòu)及其在胚胎發(fā)育中的作用研究[D];上海交通大學(xué);2014年
8 沈兵;致癌染料的生理毒性及分子機(jī)制研究[D];浙江大學(xué);2015年
9 張慶友;斑馬魚Mil/s1pr2和vmhc基因的功能研究及藥源性心臟毒性模型的建立[D];北京協(xié)和醫(yī)學(xué)院;2011年
10 楊梅;乙草胺對(duì)斑馬魚的發(fā)育和生殖內(nèi)分泌干擾機(jī)制研究[D];浙江大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 崔俊安;稀土對(duì)斑馬魚胚胎發(fā)育的影響[D];青島科技大學(xué);2011年
2 吳二社;nano-TiO_2,nano-Ag對(duì)斑馬魚胚胎發(fā)育的毒理學(xué)研究[D];西北師范大學(xué);2012年
3 溫鼎聲;利用模式生物斑馬魚對(duì)化合物心臟毒性和急毒性篩選的研究[D];華南理工大學(xué);2012年
4 梁榮朝;丙烯酰胺對(duì)斑馬魚生物余能的影響及對(duì)其肝、鰓毒性的作用[D];哈爾濱商業(yè)大學(xué);2013年
5 海洋;魚藤素對(duì)斑馬魚胚胎CyclinD1的表達(dá)調(diào)控及相關(guān)抗腫瘤機(jī)制研究[D];華南理工大學(xué);2015年
6 蔣宇霞;東江流域沉積物生物毒性及其沉積物質(zhì)量綜合評(píng)價(jià)[D];中國科學(xué)院研究生院(廣州地球化學(xué)研究所);2015年
7 袁忠月;殼聚糖納米載體對(duì)神經(jīng)系統(tǒng)影響的研究[D];浙江大學(xué);2015年
8 余凱敏;毒死蜱對(duì)斑馬魚胚胎的毒性機(jī)制研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
9 羅茜;斑馬魚生長抑素-1基因靶向敲降和營救以及基于表達(dá)譜的胚胎發(fā)育功能分析[D];西南大學(xué);2015年
10 胡月陽;UBE2C基因在斑馬魚胚胎發(fā)育中的時(shí)空表達(dá)規(guī)律[D];河北醫(yī)科大學(xué);2015年
,本文編號(hào):2175234
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2175234.html