小ERF轉(zhuǎn)錄因子參與調(diào)控擬南芥對ABA和鹽脅迫的響應(yīng)
[Abstract]:Ethylene (Ethylene) participates in many aspects of plant growth and development, including seed dormancy break, seedling growth regulation, leaf abscission, flower opening and senescence and abscission, fruit ripening, nodule formation, etc. in addition, ethylene also participates in regulating plant biological stress such as pathogen infection, as well as response to abiotic stress such as drought, salt and other abiotic stresses,.ER Fs (Ethylene Response Factors) is a unique transcription factor in plants. It belongs to the AP2 (APETALA2) /ERF superfamily.ERF family with 4 small ERF proteins, which are ERF95, ERF96, ERF97, and respectively. These proteins are highly similar, and are highly similar to those of other carboxy terminal sequences. The domain CMIX-1, but they do not possess the N terminal transcriptional factor active regions of other ERFs, such as AtERF1 and other ERFs, has been reported that ERF95 and ERF98 participated in the regulation of plant response to abiotic stress, while ERF96 and ERF97 participated in the regulation of plant responses to biological stress. The effect of mustard on ABA response. The phylogenetic tree analysis of the whole sequence of amino acids showed that ERF95, ERF96 and ERF97 were clustered into one cluster, and the relationship between ERF98 and their three was far from.QRT-PCR results showed that the expression patterns of these small ERFs were different: ERF95, ERF97 and ERF98 in the roots, stems, leaves, flowers and maturity of Arabidopsis plants. The expression of ERF95 is the highest in the mature seeds, but the highest expression in the mature seeds, the highest expression of ERF98 in the stem, while the expression of ERF97 in the flowers and seeds is relatively high.ERF96 is also high in the flowers and seeds, but in the root, almost no expression of ERF96 is detected. Protein subcellular localization analysis indicates ERF95, E RF96, ERF97 and ERF98 were both located in the nucleus. The transient transfection experiment of mesophyll protoplasts showed that all ERFs had transcriptional activation activity, and the EDLL motif was necessary for its transcriptional activation activity. Although the three mutant erf95 erf96 erf97 and erf96 erf97 erf98, and the four mutant erf95, are all closely related to the wild type phenotype. However, the overexpression of Arabidopsis plants was obviously different from the wild type, especially in ERF95. Especially, there was a significant difference between the size of the lotus leaf and the wild type of ERF95, ERF96 and ERF98 (P0.01), and the flowering time was obviously delayed (P0.01).ABA sensitivity test results showed that the transgene of Arabidopsis small ERFs was overexpressed. The sensitivity of the plant to ABA was enhanced, especially ERF95, ERF96 and ERF98 overexpressed transgenic plants. After ABA treatment, the germination rate, the green seedling rate and the root length were far lower than those of the wild type.QRT-PCR. The expression level of ABA responsive genes in the over expressed ERFs transgenic plants was significantly higher than that of the ABA response genes. The results of physiological experiments showed that the water loss rate of the transgenic plants with small ERFs overexpression was significantly lower than that of the Col wild type, and the pore size of the plant was less than that of the wild type of Col, and the instantaneous leaf water use efficiency of the plant was higher than that of the Col wild type. These results indicated that the small ERFs was all involved in the response to ABA in Arabidopsis thaliana. In addition, we were able to regulate the response of the transgenic plants to the wild type of the Col. It was also found that ERF96 and ERF97 were also involved in the response of Arabidopsis to NaCl stress. Under the condition of NaCl treatment, the seedling growth of ERF96 and ERF97 over expressed transgenic plants was better than the wild type, and the fresh weight on the ground part was significantly higher than that of the wild type, and the number of the lateral roots was significantly more than the wild type.NaCl treatment could induce RD29A, P5CS, COR15A in the wild type Col. The expression of salt stress response genes, such as KIN1 and RAB18, and the expression level of these genes in ERF96 and ERF97 transgenic plants were significantly higher than those of Col wild type. The results of ion content detection showed that the content of Na+ in the small ERF96 and ERF97 overexpressed transgenic plants was relatively low, and the K+ content was higher, indicating that small ERFs may be influenced by Na+, K+. Metabolism then regulates plant responses to salt stress.
【學(xué)位授予單位】:東北師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:Q943.2
【相似文獻】
相關(guān)期刊論文 前10條
1 陳瑞;王麗蓉;陸漓;張振先;張德頤;;水稻幼葉中與ABA親和力強的結(jié)合蛋白[J];Journal of Integrative Plant Biology;1992年03期
2 邢宇,王幼群,張蜀秋,黃從林,吳忠義,賈文鎖;酪氨酸蛋白磷酸酶可能影響ABA的積累和參與植物細(xì)胞水分脅迫信號傳遞[J];科學(xué)通報;2003年04期
3 趙春章;劉慶;姚曉芹;汪明;龔良春;;長期噴施ABA對云杉幼苗生長和生理特性的影響[J];植物學(xué)通報;2008年03期
4 李巍;蕭浪濤;;一種新型電流型免疫傳感器的ABA最優(yōu)測定條件研究[J];生物技術(shù)通報;2008年03期
5 董永華,史吉平,李廣敏,韓建民,商振清;外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J];西北植物學(xué)報;1998年02期
6 劉榮坤;沈英娃;劉小潔;;植物對二氧化硫生理反應(yīng)的研究 Ⅱ.氣孔與抗性關(guān)系及 ABA(脫落酸)效應(yīng)的測定[J];遼寧大學(xué)學(xué)報(自然科學(xué)版);1983年01期
7 李亞男,陳大清,胡培麗;ABA和6-BA對不同溫度條件下芝麻幼苗某些生理指標(biāo)的影響[J];長江大學(xué)學(xué)報(自科版);2005年08期
8 李霞;任承鋼;;ABA、BA及DPI對高表達玉米C_4pepc基因的水稻光合特性及葉綠素?zé)晒馓匦缘挠绊慬J];植物生理學(xué)報;2012年06期
9 張亮;李燕;楊笑tR;吳明杰;蔡黎;楊毅;;一個與ABA信號通路相關(guān)未知基因AB的亞細(xì)胞定位研究[J];四川大學(xué)學(xué)報(自然科學(xué)版);2010年04期
10 譚云,葉慶生,李玲;植物抗旱過程中ABA生理作用的研究進展[J];植物學(xué)通報;2001年02期
相關(guān)會議論文 前10條
1 劉春玲;彭新湘;郭振飛;;水稻對幾種逆境的抗性與ABA的關(guān)系[A];中國青年農(nóng)業(yè)科學(xué)學(xué)術(shù)年報[C];2002年
2 趙志光;陳國倉;張承烈;;活性氧和一氧化氮參與干旱脅迫誘導(dǎo)的小麥根尖ABA合成[A];西部地區(qū)第二屆植物科學(xué)與開發(fā)學(xué)術(shù)討論會論文摘要集[C];2001年
3 湯日圣;張大棟;童紅玉;;高溫脅迫傷害水稻秧苗及6-BA、ABA的調(diào)節(jié)作用[A];中國植物生理學(xué)會第九次全國會議論文摘要匯編[C];2004年
4 張蓉平;左彪;高杰;張麗;王新平;;分子水平研究AB及ABA型氟化嵌段共聚物甲苯溶液氣液界面結(jié)構(gòu)[A];中國化學(xué)會第十三屆膠體與界面化學(xué)會議論文摘要集[C];2011年
5 郭振飛;劉娥娥;盧少云;陳慧萍;劉春玲;;水稻對幾種逆境的多重耐性—與ABA的關(guān)系[A];中國植物生理學(xué)會全國學(xué)術(shù)年會暨成立40周年慶祝大會學(xué)術(shù)論文摘要匯編[C];2003年
6 蔣明義;;ABA誘導(dǎo)作物細(xì)胞抗氧化防護的信號轉(zhuǎn)導(dǎo)研究[A];中國植物生理學(xué)會第十次會員代表大會暨全國學(xué)術(shù)年會論文摘要匯編[C];2009年
7 張曉楓;姜濤;王小芳;張大鵬;;ABA信號轉(zhuǎn)導(dǎo):ADR2拮抗ABAR-WRKY40信號通路[A];2011全國植物生物學(xué)研討會論文集[C];2011年
8 王勇;陸旺金;張昭其;;ABA在果實采后領(lǐng)域的研究進展[A];中國園藝學(xué)會第五屆青年學(xué)術(shù)討論會論文集[C];2002年
9 陳其軍;安瑞;秦治翔;陳珈;王學(xué)臣;;通過同時激活依賴于ABA和不依賴于ABA的逆境脅迫信號轉(zhuǎn)導(dǎo)途徑改善擬南芥和煙草的抗逆性[A];2004中國植物生理生態(tài)學(xué)學(xué)術(shù)研討會論文摘要匯編[C];2004年
10 于晶;王興;蒼晶;;外源ABA、GA及6-BA對冬小麥抗寒性的影響[A];中國植物生理學(xué)會第十次會員代表大會暨全國學(xué)術(shù)年會論文摘要匯編[C];2009年
相關(guān)博士學(xué)位論文 前9條
1 孫永華;玉米ABA受體基因的選擇性剪接及其在抗旱性方面的功能研究[D];中國農(nóng)業(yè)科學(xué)院;2014年
2 呂天曉;擬南芥MAX2蛋白介導(dǎo)ABA信號及抗旱反應(yīng)的分子機制[D];中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2015年
3 王曉蘋;小ERF轉(zhuǎn)錄因子參與調(diào)控擬南芥對ABA和鹽脅迫的響應(yīng)[D];東北師范大學(xué);2016年
4 張浩;ABA敏感性對擬南芥群體異速生長指數(shù)和個體相互作用的調(diào)控研究[D];浙江大學(xué);2006年
5 王金香;ABA誘導(dǎo)的玉米(Zea mays L.)MAPK基因克隆、表達分析、定位及功能研究[D];南京農(nóng)業(yè)大學(xué);2009年
6 呂東;ATHK1參與ABA誘導(dǎo)氣孔關(guān)閉的信號轉(zhuǎn)導(dǎo)過程[D];河南大學(xué);2012年
7 張艷艷;植物磷酶D、一氧化氮和過氧化氫在轉(zhuǎn)導(dǎo)ABA、鹽脅迫信號中的關(guān)系[D];南京農(nóng)業(yè)大學(xué);2007年
8 劉浩;擬南芥一個2OG-Fe(Ⅱ)氧化還原酶在GA合成及其與ABA互作的功能分析[D];河南大學(xué);2011年
9 弓雪;擬南芥AtSUC2和AtSUC4對理化逆境及外源ABA的響應(yīng)[D];沈陽農(nóng)業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 朱蘭芳;ABA對水稻不同發(fā)育階段光合作用調(diào)控及其機理分析[D];福建農(nóng)林大學(xué);2012年
2 顧建偉;光敏色素B介導(dǎo)的光信號調(diào)控水稻ABA反應(yīng)的研究[D];鄭州大學(xué);2012年
3 鄒興建;干旱脅迫下不同倍性水稻的生理差異及ABA相關(guān)基因表達比較[D];四川農(nóng)業(yè)大學(xué);2010年
4 郭貴華;長江下游水稻品種耐旱性比較及對外源ABA響應(yīng)[D];南京農(nóng)業(yè)大學(xué);2014年
5 韓璐;OsABA8ox2-RNAi轉(zhuǎn)基因水稻鑒定及ABA相關(guān)基因表達分析[D];哈爾濱師范大學(xué);2014年
6 齊光;黑龍江省主栽水稻品種苗期耐冷鑒定及ABA對苗期耐冷的調(diào)節(jié)作用[D];東北農(nóng)業(yè)大學(xué);2008年
7 劉子會;干旱脅迫下玉米ABA和pH與鈣信使的關(guān)系研究[D];河北師范大學(xué);2004年
8 王英哲;低溫脅迫下紫花苜蓿對外源SA和ABA的生理響應(yīng)[D];吉林農(nóng)業(yè)大學(xué);2012年
9 王娟;干旱條件下外源ABA提高煙草幼苗抗旱性的作用機制[D];東北林業(yè)大學(xué);2014年
10 張靜媛;ABA對擬南芥根系皮層細(xì)胞水力學(xué)特性的影響[D];西北農(nóng)林科技大學(xué);2013年
,本文編號:2145425
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2145425.html