石墨烯(炔)材料電荷輸運(yùn)性質(zhì)的第一性原理研究
本文選題:石墨烯 + 石墨炔; 參考:《山東大學(xué)》2016年博士論文
【摘要】:隨著電子器件小型化的不斷發(fā)展,傳統(tǒng)的硅基材料集成電路的尺寸在不斷地縮小,根據(jù)著名的摩爾定律的預(yù)測(cè),硅基器件的尺寸將進(jìn)一步的縮小到1~2nm左右,這個(gè)尺寸的大小已經(jīng)進(jìn)入到分子和原子領(lǐng)域,因此能否利用單個(gè)分子來(lái)形成納米回路中元器件的這個(gè)想法很自然的成為人們非常關(guān)注的問題。令人們感到高興的事,單個(gè)分子確實(shí)可以小型化傳統(tǒng)的硅基微電子器件,并且還可以表現(xiàn)出傳統(tǒng)硅基器件所具有的功能。因此,我們把研究利用單個(gè)原子或者利用單個(gè)分子來(lái)構(gòu)建電子回路中的功能性元件的方法叫做分子電子學(xué)。一直以來(lái),人們都在設(shè)計(jì)尋找并且制備分子尺寸的電子器件。1959年,美國(guó)的物理學(xué)家費(fèi)曼在物理學(xué)會(huì)年會(huì)上發(fā)表了著名的演講"Plenty of Room at the Bottom ",提出了在分子和原子的尺寸上建立電子器件然后構(gòu)成集成電路的想法,這個(gè)想法在當(dāng)時(shí)引起了深遠(yuǎn)的影響。傳統(tǒng)的想法是建立好宏觀系統(tǒng)和元件,然后將他們的尺寸縮小,而費(fèi)曼的想法是直接從原子尺度上來(lái)建立電子器件,最后利用這個(gè)電子器件組合成電路。相比于傳統(tǒng)的硅基半導(dǎo)體材料來(lái)說(shuō),應(yīng)用分子作為電子器件的元件具有許多巨大的優(yōu)勢(shì),例如:①大小尺寸方面:分子的體積小(1-10nm)并且具有非常高的集成密度,在能源消耗及利用效率方面具有極大的優(yōu)勢(shì);②運(yùn)算速度方面:電子輸運(yùn)性質(zhì)較好的分子線可以減小晶體管的渡越時(shí)間,減少運(yùn)算時(shí)間;③組裝和識(shí)別方面:可以利用特殊的分子間相互作用形成納米尺度自組裝結(jié)構(gòu)。分子識(shí)別可以用來(lái)調(diào)節(jié)電子行為,提供單分子尺度上的開關(guān)和感知功能;④合成可修正性:選擇不同的組合和結(jié)構(gòu)就能改變分子電子輸運(yùn)性質(zhì);⑤具有新的功能:某些特殊種類的分子,存在不同的穩(wěn)定結(jié)構(gòu)或者同分異構(gòu)體,這在傳統(tǒng)固態(tài)材料中是不可能實(shí)現(xiàn)的。隨著實(shí)驗(yàn)技術(shù)手段的發(fā)展,多種分子電子器件都可以制備出來(lái),這都要?dú)w功于這些先進(jìn)的設(shè)備儀器,這里我們簡(jiǎn)單的介紹幾種。①掃描電子顯微鏡技術(shù)(STM),是目前最通用的制備原子尺度接觸的方法之一。實(shí)驗(yàn)方法是將含有目標(biāo)分子的溶液放在金屬的襯底上,利用STM探頭在金屬襯底表面做伸縮運(yùn)動(dòng),從而形成了探頭、目標(biāo)分子和金屬襯底的三明治電極結(jié)構(gòu),從而測(cè)得電導(dǎo)數(shù)值。此外還有②原子力顯微鏡技術(shù),③透射電鏡技術(shù)(TEM)④力學(xué)可控破缺結(jié)等等。隨著實(shí)驗(yàn)手段的發(fā)展,理論方法也在不斷地創(chuàng)新,用來(lái)更精確的表述分子電子器件中的電荷或自旋輸運(yùn)問題。就目前來(lái)說(shuō),結(jié)合密度泛函理論和非平衡格林函數(shù)方法是處理分子電子輸運(yùn)的首選方法,并且已經(jīng)廣泛應(yīng)用于相關(guān)的研究中,例如單分子團(tuán)簇,分子線,石墨烯以及納米管等。自從2004年,英國(guó)曼徹斯特大學(xué)的Novoselov和Geim首次在實(shí)驗(yàn)上分離出單層石墨烯以來(lái),石墨烯的相關(guān)研究就受到了人們的廣泛關(guān)注。也就是在這個(gè)時(shí)期,二維的平面材料成為人們研究的熱點(diǎn);趩螌拥氖,沿著兩個(gè)不同的方向進(jìn)行裁剪,可以得到兩種不同種類的石墨烯納米條帶。通常按照邊緣的樣式,可以將石墨烯納米條帶區(qū)分為鋸齒形石墨烯納米條帶(ZGNRs)和扶手椅形石墨烯納米條帶(AGNRs)。其中,關(guān)于ZGNRs的研究更是非常的興盛,先前的研究人員的工作重點(diǎn)是研究ZGNRs的電子輸運(yùn)特性,并且是將ZGNRs的一部分鏈接到ZGNRs電極上,在這種情況下,就會(huì)忽略掉ZGNRs片段與ZGNRs電極的接觸位置效應(yīng)。再者,ZGNRs具有邊緣態(tài),能夠在Fermi能級(jí)處產(chǎn)生較強(qiáng)的電子密度分布,這種奇特電子密度分布可能會(huì)對(duì)基于ZGNRs電子器件產(chǎn)生特殊的輸運(yùn)特性。因此基于ZGNRs的研究的非常重要的。人們?cè)谘芯縮p2雜化的石墨烯的同時(shí),也在不斷地探索具有不同雜化形式新的碳的同素異形體。由于石墨炔具有獨(dú)特的sp2和sp雜化特性,近幾年石墨炔方面的研究同樣受到廣泛關(guān)注,Hirsch認(rèn)為對(duì)石墨炔研究的新時(shí)代即將到來(lái)。盡管科學(xué)家在有關(guān)石墨炔結(jié)構(gòu)、合成、特性等方面開展了許多研究工作,但是有關(guān)石墨炔體系電子輸運(yùn)性質(zhì)方面的研究卻鮮有報(bào)道。由于石墨炔中組成π電子的碳原子軌道成份不同,導(dǎo)致以往關(guān)于石墨烯結(jié)構(gòu)的電子輸運(yùn)性質(zhì)的結(jié)論不能完全適用于石墨炔體系。因此,研究石墨炔體系的電子輸運(yùn)性質(zhì),探索適用于研究sp2和sp雜化體系的電子輸運(yùn)機(jī)制的理論具有非常重要的理論和應(yīng)用價(jià)值。本論文中的三個(gè)工作就是基于石墨烯和石墨炔這兩種材料展開研究的。1. ZGNRs電極與石墨一炔子結(jié)構(gòu)的電子輸運(yùn)特性考慮到石墨一炔結(jié)構(gòu)中包含sp2和sp兩種不同的雜化模式,它的電子輸運(yùn)特性以及相關(guān)的物理機(jī)制問題研究的較少,因此探索適用于研究sp2和sp雜化體系的電子輸運(yùn)機(jī)制的理論具有非常重要的理論和應(yīng)用價(jià)值。考慮到電極與中心分子的接觸電阻問題,我們選取了ZGNRs作為電極,這是由于它們都是二維的平面材料,并且ZGNRs具有邊緣態(tài),能夠在Fermi能級(jí)處產(chǎn)生較強(qiáng)的電子密度分布,這種奇特電子密度分布可能會(huì)對(duì)基于ZGNRs電子器件產(chǎn)生特殊的輸運(yùn)特性。我們利用密度泛函理論和非平衡格林函數(shù)相結(jié)合的方法,研究了石墨一炔子結(jié)構(gòu)與鋸齒形石墨烯電極構(gòu)成的三明治結(jié)構(gòu)的電荷輸運(yùn)特性。主要考慮石墨一炔與電極鏈接不同位置以及電極的不同寬度對(duì)該體系電荷輸運(yùn)特性的影響。我們發(fā)現(xiàn):①無(wú)論石墨一炔與ZGNRs電極的鏈接位置如何,體系都會(huì)表現(xiàn)出半導(dǎo)體的電荷輸運(yùn)特性,這是由石墨一炔體系的HOMO-LUMO gap決定的。②當(dāng)石墨一炔鏈接在ZGNRs電極的邊緣位置處的電流要比石墨一炔鏈接在ZGNRs電極中心位置處的電流要大,并且隨著鏈接位置越來(lái)越靠近ZGNRs中心處,電流的大小會(huì)越來(lái)越小。③當(dāng)整個(gè)體系關(guān)于xz中垂面鏡面對(duì)稱時(shí),宇稱限制隧穿效應(yīng)可以完全破壞掉體系的電子輸運(yùn)特性,增大體系的開啟偏壓。在本研究工作中,我們著重對(duì)這三個(gè)現(xiàn)象的物理機(jī)制進(jìn)行了系統(tǒng)性的探討。2.鋸齒形石墨一炔(ZGYRs)與ZGNRs異質(zhì)結(jié)的整流特性研究傳統(tǒng)的整流觀點(diǎn)是要保證體系具有不對(duì)稱性,這樣就可能會(huì)產(chǎn)生整流現(xiàn)象,從而制造分子整流器件。我們利用密度泛函理論和非平衡格林函數(shù)相結(jié)合的方法計(jì)算了兩種不同的體系ZGYRs和ZGNRs構(gòu)成異質(zhì)結(jié)的整流特性,發(fā)現(xiàn)不對(duì)稱的體系不一定能夠產(chǎn)生整流現(xiàn)象。為了更深入的研究這個(gè)問題,我們對(duì)ZGYRs進(jìn)行了氧原子的替換,我們發(fā)現(xiàn)未受氧原子替換的ZGYRs與ZGNRs形成的異質(zhì)結(jié)沒有出現(xiàn)整流現(xiàn)象,這主要?dú)w因于這兩個(gè)體系的能帶結(jié)構(gòu)是關(guān)于Fermi能級(jí)對(duì)稱的,在正負(fù)偏壓的影響下,電流都是對(duì)稱性分布的。而當(dāng)ZGYRs被氧原子替換后,體系的整流方法發(fā)生變化,替換不同位置,整流方向是不相同的。更重要的是,如果氧原子是對(duì)稱性替換掉ZGYRs的話,體系會(huì)表現(xiàn)出偏壓誘導(dǎo)的整流反轉(zhuǎn)現(xiàn)象。3.局域應(yīng)力下的ZGNRs的電子輸運(yùn)特性先前的工作者對(duì)ZGNRs的電荷輸運(yùn)性質(zhì)的研究發(fā)現(xiàn),偶數(shù)寬度的ZGNRs具有鏡面對(duì)稱性,因此它的電流大小會(huì)受到宇稱限制隧穿效應(yīng)的影響,從而表現(xiàn)出電流抑制效應(yīng)。我們?cè)O(shè)想如果偶數(shù)寬的ZGNRs的對(duì)稱性被部分的打破,是否還會(huì)出現(xiàn)電流抑制效應(yīng)?基于這一點(diǎn),我們利用密度泛函理論和非平衡格林函數(shù)相結(jié)合的方法,研究了ZGNRs在外加局域應(yīng)力后的電荷輸運(yùn)特性,主要考慮應(yīng)力作用的不同范圍以及應(yīng)力作用的大小對(duì)該體系電荷輸運(yùn)性質(zhì)的影響。研究發(fā)現(xiàn),在較小的局域應(yīng)力作用下,體系的電子輸運(yùn)特性基本上沒有發(fā)生變化,表現(xiàn)出與未受應(yīng)力的體系相同的電流曲線特征-電流抑制現(xiàn)象。繼續(xù)增大應(yīng)力后,一些體系在應(yīng)力的作用下誘導(dǎo)產(chǎn)生了局域態(tài),并且我們發(fā)現(xiàn)局域態(tài)在零偏壓下阻礙的電子的傳輸。然而在有限偏壓下,應(yīng)力誘導(dǎo)的局域態(tài)卻可以促進(jìn)ZGNRs的電荷輸運(yùn)行為,原因在于偏壓下的局域態(tài)破壞了ZGNRs電子密度分布的對(duì)稱性,從而打破了電流抑制效應(yīng)。進(jìn)一步研究發(fā)現(xiàn),應(yīng)力作用的范圍不同也會(huì)明顯影響體系的電子輸運(yùn)特性,應(yīng)力作用在邊緣原子上對(duì)體系的電子輸運(yùn)的改變小于應(yīng)力作用在中心區(qū)域,并且體系原本的電子密度分布也對(duì)應(yīng)力的響應(yīng)不同,也會(huì)對(duì)體系電子輸運(yùn)性質(zhì)產(chǎn)生影響。
[Abstract]:With the development of electronic devices miniaturization, the size of traditional silicon based integrated circuits is shrinking. According to the prediction of the famous Moore's law, the size of silicon based devices will be further reduced to about 1 ~ 2nm. The size of this size has already entered the field of molecules and atoms, and can be formed by a single molecule. This idea is a natural concern in nanoscale circuits. It makes people feel happy that a single molecule can actually miniaturized the traditional silicon based microelectronic devices and can also show the functions of traditional silicon based devices. So, we use a single atom or use a single point. The way to build functional components in electronic circuits is called molecular electronics. All the time, people have been designing electronic devices to find and prepare molecular sizes for.1959. The American physicist Feynman published a famous speech "Plenty of Room at the Bottom" at the annual meeting of the Physics Society, which was put forward in molecules and atoms. The idea of building an electronic device in size and forming an integrated circuit had a profound effect at the time. The traditional idea was to establish macro systems and components and reduce their size, and Feynman's idea was to establish electronic devices directly from the atomic scale and then combine this electronic device into a circuit. Compared to the traditional silicon based semiconductor materials, the elements used as electronic devices have many great advantages, such as: (1) size dimension: small size of the molecule (1-10nm) and very high integration density, which has great advantages in energy consumption and utilization efficiency mask; Molecular lines with better transport properties can reduce the transition time of transistors and reduce operation time; (3) assembly and recognition: a nano scale self-assembly structure can be formed by special intermolecular interaction. Molecular recognition can be used to regulate electronic behavior, provide switching and perceptual functions on a single sub scale; (4) synthesis Modifiability: the selection of different combinations and structures can change the molecular transport properties of molecules; (5) new functions: some special types of molecules have different stable structures or isomers, which can not be realized in traditional solid materials. With the development of experimental techniques, various molecular electronic devices are available. In order to prepare it, this is due to these advanced equipment. Here we simply introduce several kinds. (1) the scanning electron microscope (STM) is one of the most common methods for preparing the atomic scale contact. The experimental method is to put the solution containing the target molecules on the metal substrate and use the STM probe on the surface of the metal substrate. With the expansion motion, the probe, the sandwich electrode structure of the target molecule and the metal substrate are formed, and the conductance values are measured. In addition, the atomic force microscope technique, the transmission electron microscope (TEM), mechanical and controllable breaking and so on. With the development of the experimental means, the theoretical method is constantly innovating and used for more precise expression. Charge or spin transport in molecular electronic devices. At present, the combination of density functional theory and nonequilibrium Green function method is the first choice to deal with molecular electron transport, and has been widely used in related studies, such as single molecular clusters, molecular lines, graphene, and nanotubes, etc. since 2004, Manchester United The study of graphene has attracted wide attention since the first single graphene was separated from Novoselov and Geim in the University. In this period, two-dimensional plane materials have become the hot spots. Based on the single graphene, two different directions are cut, and two kinds of materials can be obtained. The same kind of graphene nanoscale bands. Usually, the graphene nanometers can be divided into serrated graphene nanometers (ZGNRs) and armchair graphene nanoscale ribbons (AGNRs) according to the edge patterns. The research on ZGNRs is more prosperous. The previous researchers focused on the study of the electron transport of ZGNRs. In this case, a part of ZGNRs is linked to the ZGNRs electrode. In this case, the contact position effect of the ZGNRs fragment and the ZGNRs electrode is ignored. Furthermore, the ZGNRs has the edge state, which can produce a strong electron density distribution at the Fermi level. This peculiar electron density distribution may produce a special electronic density distribution based on the ZGNRs electronic devices. Therefore, the research based on ZGNRs is very important. In the study of SP2 hybrid graphene, people continue to explore the Homo heteromorphs with different kinds of hybrid forms of carbon. Because of the unique SP2 and SP hybrid properties of graphite alkynes, the research of graphite and acetylene in recent years has also been widely concerned, Hirsch It is believed that the new era of graphite acetylene is coming. Although scientists have done a lot of research on the structure, synthesis and properties of graphite alkynes, there are few reports about the electronic transport properties of graphite alkynes. The conclusion that the electronic transport properties of the graphene structure can not be fully applied to the graphite alkyne system. Therefore, it is very important to study the electronic transport properties of the graphite acetylene system and explore the theory and application value for the study of the electronic transport mechanism of SP2 and SP hybrid systems. The three work in this paper is based on graphene and stone. The electronic transport properties of.1. ZGNRs electrodes and graphite monyne structures studied by the two kinds of graphite alkynes are considered as two different hybrid modes of SP2 and SP in the graphite monyne structure. The electron transport properties and related physical mechanism problems are less studied. Therefore, the probe is suitable for the study of the electrons of the SP2 and SP hybrid systems. The theory of transport mechanism has a very important theoretical and practical value. Considering the contact resistance between the electrodes and the central molecules, we choose ZGNRs as the electrode, which is because they are two-dimensional plane materials, and ZGNRs has the edge state, which can produce strong electron density distribution at the Fermi level, this strange electron. Density distribution may produce special transport properties for ZGNRs based electronic devices. Using the method of density functional theory and nonequilibrium Green function, we study the charge transport properties of the sandwich structure composed of the graphite monyne structure and the sawtooth graphene electrode. The main consideration is that the graphite one acetylene is linked to the electrode. The influence of the different widths of the electrode and the electrode on the charge transport characteristics of the system. We found that: (1) the charge transport properties of the semiconductor, regardless of the location of the link between the graphite one and the ZGNRs electrode, are determined by the HOMO-LUMO gap of the Shi Moyi acetylene system. The current at the position of the set is larger than the graphite one at the center of the ZGNRs electrode. And as the link position gets closer to the center of the ZGNRs, the size of the current will become smaller and smaller. In this research work, we have focused on the physical mechanism of the three phenomena systematically to study the rectifying characteristics of the.2. sawtooth graphite one acetylene (ZGYRs) and the ZGNRs heterojunction. The traditional rectification viewpoint is to ensure that the system has asymmetry, which may produce rectifying phenomena and thus make the molecules. Rectifying devices. We use the density functional theory and the nonequilibrium Green function method to calculate the rectifying characteristics of two different systems, ZGYRs and ZGNRs, and find that the asymmetric system does not necessarily produce rectifying phenomena. In order to further study this problem, we have replaced the oxygen atom in ZGYRs. We found that the heterostructure formed by the unoxygen atom substitution of ZGYRs and ZGNRs has no rectifying phenomenon, which is mainly attributed to the band structure of the two systems is about the symmetry of the Fermi energy level, and the current is symmetrical under the influence of positive and negative bias. When the ZGYRs is replaced by oxygen atom, the rectification method of the system is changed and replaced. In different positions, the rectification direction is different. More importantly, if the oxygen atom is symmetric and replace the ZGYRs, the system will show the bias induced rectifying and reversal phenomenon, the electron transport properties of the ZGNRs under the local stress of.3., the previous workers on the charge transport quality of the ZGNRs found that the even number of ZGNRs has a mirror surface. We assume that if the symmetry of the even wide ZGNRs is partially broken, will there be a current suppression effect? Based on this, we use the combination of the density functional theory and the nonequilibrium Green function. The charge transport characteristics of ZGNRs after external stress are studied. The effect of the different range of stress and the size of stress on the charge transport properties of the system is mainly considered. It is found that the electronic transport properties of the system have not changed under the effect of small local stress, and show that the system is not subjected to the stress. The same current curve characteristic current suppression. After the stress continues to increase, some systems induce local states under the action of stress, and we find the transmission of electrons hindered by the local state under the zero bias. However, under the finite bias, the local state induced by the stress can promote the charge transport behavior of ZGNRs. It is that the local state under partial pressure destroys the symmetry of the distribution of ZGNRs electron density, thus breaking the effect of current suppression. Further studies have found that the range of the stress action will obviously affect the electronic transport properties of the system, and the change of the electron transport of the stress on the edge atom on the system is less than the stress in the central region, Moreover, the original electron density distribution also responds to the force response, which will also affect the electron transport properties of the system.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O469
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 傅強(qiáng);包信和;;石墨烯的化學(xué)研究進(jìn)展[J];科學(xué)通報(bào);2009年18期
2 萬(wàn)勇;馬廷燦;馮瑞華;黃健;潘懿;;石墨烯國(guó)際發(fā)展態(tài)勢(shì)分析[J];科學(xué)觀察;2010年03期
3 李宗紅;;石墨烯——二維碳的奇妙世界[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年04期
4 常艷麗;陳勝;曹傲能;;壓力促進(jìn)氧化石墨烯水熱還原反應(yīng)的機(jī)理[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期
5 李娜;;石墨烯取代硅,前景預(yù)測(cè)被批樂觀[J];科技導(dǎo)報(bào);2011年16期
6 劉霞;;神奇材料石墨烯[J];今日科苑;2011年14期
7 張文毓;全識(shí)俊;;石墨烯應(yīng)用研究進(jìn)展[J];傳感器世界;2011年05期
8 劉霞;;石墨烯:硅的“終結(jié)者”?[J];發(fā)明與創(chuàng)新(綜合科技);2011年09期
9 ;科學(xué)家觀察到石墨烯內(nèi)電子間相互作用[J];黑龍江科技信息;2011年27期
10 于桂亮;黃書騰;;淺析石墨烯的性質(zhì)與應(yīng)用前景[J];科技風(fēng);2011年21期
相關(guān)會(huì)議論文 前10條
1 成會(huì)明;;石墨烯的制備與應(yīng)用探索[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
2 錢文;郝瑞;侯仰龍;;液相剝離制備高質(zhì)量石墨烯及其功能化[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第04分會(huì)場(chǎng)摘要集[C];2010年
3 張甲;胡平安;王振龍;李樂;;石墨烯制備技術(shù)與應(yīng)用研究的最新進(jìn)展[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第3分冊(cè))[C];2010年
4 趙東林;白利忠;謝衛(wèi)剛;沈曾民;;石墨烯的制備及其微波吸收性能研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
5 沈志剛;李金芝;易敏;;射流空化方法制備石墨烯研究[A];顆粒學(xué)最新進(jìn)展研討會(huì)——暨第十屆全國(guó)顆粒制備與處理研討會(huì)論文集[C];2011年
6 王冕;錢林茂;;石墨烯的微觀摩擦行為研究[A];2011年全國(guó)青年摩擦學(xué)與表面工程學(xué)術(shù)會(huì)議論文集[C];2011年
7 趙福剛;李維實(shí);;樹枝狀結(jié)構(gòu)功能化石墨烯[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
8 吳孝松;;碳化硅表面的外延石墨烯[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
9 周震;;后石墨烯和無(wú)機(jī)石墨烯材料:計(jì)算與實(shí)驗(yàn)的結(jié)合[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年
10 周琳;周璐珊;李波;吳迪;彭海琳;劉忠范;;石墨烯光化學(xué)修飾及尺寸效應(yīng)研究[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 姚耀;石墨烯研究取得系列進(jìn)展[N];中國(guó)化工報(bào);2009年
2 劉霞;韓用石墨烯制造出柔性透明觸摸屏[N];科技日?qǐng)?bào);2010年
3 記者 王艷紅;“解密”石墨烯到底有多奇妙[N];新華每日電訊;2010年
4 本報(bào)記者 李好宇 張們捷(實(shí)習(xí)) 特約記者 李季;石墨烯未來(lái)應(yīng)用的十大猜想[N];電腦報(bào);2010年
5 證券時(shí)報(bào)記者 向南;石墨烯貴過黃金15倍 生產(chǎn)不易炒作先行[N];證券時(shí)報(bào);2010年
6 本報(bào)特約撰稿 吳康迪;石墨烯 何以結(jié)緣諾貝爾獎(jiǎng)[N];計(jì)算機(jī)世界;2010年
7 記者 謝榮 通訊員 夏永祥 陳海泉 張光杰;石墨烯在泰實(shí)現(xiàn)產(chǎn)業(yè)化[N];泰州日?qǐng)?bào);2010年
8 本報(bào)記者 紀(jì)愛玲;石墨烯:市場(chǎng)未啟 炒作先行[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2011年
9 周科競(jìng);再說(shuō)石墨烯的是與非[N];北京商報(bào);2011年
10 王小龍;新型石墨烯材料薄如紙硬如鋼[N];科技日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 呂敏;雙層石墨烯的電和磁響應(yīng)[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
2 羅大超;化學(xué)修飾石墨烯的分離與評(píng)價(jià)[D];北京化工大學(xué);2011年
3 唐秀之;氧化石墨烯表面功能化修飾[D];北京化工大學(xué);2012年
4 王崇;石墨烯中缺陷修復(fù)機(jī)理的理論研究[D];吉林大學(xué);2013年
5 盛凱旋;石墨烯組裝體的制備及其電化學(xué)應(yīng)用研究[D];清華大學(xué);2013年
6 姜麗麗;石墨烯及其復(fù)合薄膜在電極材料中的研究[D];西南交通大學(xué);2015年
7 姚成立;多級(jí)結(jié)構(gòu)石墨烯/無(wú)機(jī)非金屬?gòu)?fù)合材料的仿生合成及機(jī)理研究[D];安徽大學(xué);2015年
8 伊丁;石墨烯吸附與自旋極化的第一性原理研究[D];山東大學(xué);2015年
9 梁巍;基于石墨烯的氧還原電催化劑的理論計(jì)算研究[D];武漢大學(xué);2014年
10 王義;石墨烯的模板導(dǎo)向制備及在電化學(xué)儲(chǔ)能和腫瘤靶向診療方面的應(yīng)用[D];復(fù)旦大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 詹曉偉;碳化硅外延石墨烯以及分子動(dòng)力學(xué)模擬研究[D];西安電子科技大學(xué);2011年
2 王晨;石墨烯的微觀結(jié)構(gòu)及其對(duì)電化學(xué)性能的影響[D];北京化工大學(xué);2011年
3 苗偉;石墨烯制備及其缺陷研究[D];西北大學(xué);2011年
4 蔡宇凱;一種新型結(jié)構(gòu)的石墨烯納米器件的研究[D];南京郵電大學(xué);2012年
5 金麗玲;功能化石墨烯的酶學(xué)效應(yīng)研究[D];蘇州大學(xué);2012年
6 黃凌燕;石墨烯拉伸性能與尺度效應(yīng)的研究[D];華南理工大學(xué);2012年
7 劉汝盟;石墨烯熱振動(dòng)分析[D];南京航空航天大學(xué);2012年
8 雷軍;碳化硅上石墨烯的制備與表征[D];西安電子科技大學(xué);2012年
9 于金海;石墨烯的非共價(jià)功能化修飾及載藥系統(tǒng)研究[D];青島科技大學(xué);2012年
10 李晶;高分散性石墨烯的制備[D];上海交通大學(xué);2013年
,本文編號(hào):1991749
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1991749.html