天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

射頻感性耦合氫等離子體放電模式轉(zhuǎn)換及回滯的模擬研究

發(fā)布時(shí)間:2018-06-07 13:05

  本文選題:射頻感性耦合等離子體 + 模式轉(zhuǎn)換 ; 參考:《大連理工大學(xué)》2016年博士論文


【摘要】:射頻感性耦合等離子體(Inductively Coupled Plasma, ICP)源具有放電氣壓低,等離子體密度高,均勻性易于控制,裝置簡(jiǎn)單,無(wú)需外加直流磁場(chǎng)等優(yōu)點(diǎn),因此它在半導(dǎo)體工藝和材料處理等領(lǐng)域得到了廣泛應(yīng)用。眾所周知,ICP源中存在兩種放電模式:容性放電模式(E模式)和感性放電模式(H模式)。當(dāng)調(diào)節(jié)外界放電參數(shù)(如線圈電流、輸入功率、匹配網(wǎng)絡(luò)中串聯(lián)電容、放電頻率及氣壓等)時(shí),等離子體放電模式會(huì)發(fā)生轉(zhuǎn)換,等離子體參數(shù)(如等離子體密度、電子溫度等)以及放電回路電學(xué)參數(shù)(如線圈電流、電壓以及等效回路阻抗等)會(huì)發(fā)生突變,往返調(diào)節(jié)放電參數(shù)時(shí),等離子體參數(shù)及放電回路電學(xué)參數(shù)還會(huì)出現(xiàn)回滯現(xiàn)象。這種放電模式轉(zhuǎn)換及回滯行為會(huì)引起放電的不穩(wěn)定,對(duì)工業(yè)過(guò)程產(chǎn)生很大影響,因此研究ICP源的模式轉(zhuǎn)換及回滯行為,對(duì)控制和優(yōu)化等離子體工藝具有重要意義。因此,本論文的研究目的是:針對(duì)平面線圈型ICP源裝置,將二維流體力學(xué)模型、等效回路模型、電磁場(chǎng)模型及電子的Monte-Carlo (MC)模型進(jìn)行耦合,研究射頻感性耦合氫等離子體源的模式轉(zhuǎn)換及回滯過(guò)程中各等離子體參數(shù)以及等效回路電學(xué)參數(shù)的演化規(guī)律,分析放電模式轉(zhuǎn)換及回滯現(xiàn)象的特點(diǎn)及內(nèi)在機(jī)制。在論文第一章中,首先概述了等離子體微細(xì)加工工藝,綜述了幾種典型的低溫等離子體源及其放電特點(diǎn),詳細(xì)描述了ICP源的裝置結(jié)構(gòu)特點(diǎn)、激發(fā)原理以及存在的兩種放電模式。同時(shí),系統(tǒng)地闡述了ICP源模式轉(zhuǎn)換及回滯的理論和實(shí)驗(yàn)研究進(jìn)展以及依然存在的一些問(wèn)題。最后給出了本文的研究?jī)?nèi)容和規(guī)劃。在第二章中,詳細(xì)介紹了含有外電路回路的流體模型。該模型是由等離子體的等效回路模塊、電磁場(chǎng)模塊及流體力學(xué)模塊耦合而成。等效回路模塊包括四部分:射頻電流源、匹配網(wǎng)絡(luò)、容性支路和感性支路,用來(lái)計(jì)算等效回路的電學(xué)參數(shù),如線圈電流、電壓和各電路元件阻抗等。電磁場(chǎng)模塊是通過(guò)求解麥克斯韋方程組來(lái)計(jì)算ICP源放電腔室內(nèi)射頻電磁場(chǎng)的空間分布。流體力學(xué)模塊是通過(guò)求解流體力學(xué)方程組來(lái)得到等離子體各宏觀狀態(tài)參數(shù),如粒子密度、電子溫度等。此外,本章最后還介紹了模擬中所使用的數(shù)值方法。在第三章中,用上述含有外電路回路的流體模型,采用數(shù)值模擬的方法系統(tǒng)地研究了射頻感性耦合氫等離子體放電模式轉(zhuǎn)換以及回滯行為。首先通過(guò)調(diào)節(jié)匹配網(wǎng)絡(luò)中的串聯(lián)電容C1,分析了氫等離子體模式轉(zhuǎn)換過(guò)程中電子密度、溫度等狀態(tài)參數(shù)以及電磁場(chǎng)空間分布的演化規(guī)律。結(jié)果表明,隨著C1的增加,放電由容性模式主導(dǎo)轉(zhuǎn)換為感性模式主導(dǎo),等離子體密度突然升高,電子密度最大值由腔室中心處移動(dòng)到r=6 cm處。同時(shí),電子溫度突然降低,并且電子溫度分布變化很大;電磁場(chǎng)空間分布隨模式轉(zhuǎn)換變化不大,但是幅值發(fā)生很大變化,容性電場(chǎng)顯著降低,感性電場(chǎng)顯著升高。此外,通過(guò)往返調(diào)節(jié)C1,研究了不同氣壓下外界回路對(duì)回滯過(guò)程的影響。研究結(jié)果表明,氣壓為100 mTorr時(shí),當(dāng)增大C1時(shí),放電模式由E模式轉(zhuǎn)換為H模式,當(dāng)減小C1時(shí),放電模式由H模式轉(zhuǎn)換為E模式,并且E模式轉(zhuǎn)換到H模式時(shí)的C1值與H模式轉(zhuǎn)換到E模式時(shí)的C1值不同,有明顯的回滯環(huán)產(chǎn)生。等離子體電學(xué)參數(shù),如線圈電流和電壓、等離子體電阻和電感等,隨著C1的改變也出現(xiàn)明顯跳變及回滯現(xiàn)象。當(dāng)氣壓為20 mTorr時(shí),往返調(diào)節(jié)C1,等離子體狀態(tài)參數(shù)和電學(xué)參數(shù)出現(xiàn)明顯的跳變,但是沒(méi)有回滯產(chǎn)生。最后,固定C1,通過(guò)調(diào)節(jié)輸入電流的大小,研究了不同氣壓下輸入電流對(duì)模式轉(zhuǎn)換及回滯過(guò)程的影響。當(dāng)輸入電流達(dá)到一定值時(shí),放電由E模式轉(zhuǎn)換到H模式。減小輸入電流時(shí),放電由H模式轉(zhuǎn)換到E模式。與調(diào)節(jié)C1時(shí)相似,當(dāng)氣壓比較高時(shí),有明顯的回滯現(xiàn)象產(chǎn)生。氣壓低時(shí),往返調(diào)節(jié)輸入電流沒(méi)有回滯產(chǎn)生。在第四章中,為了考察ICP源中電子的非局域動(dòng)力學(xué)行為對(duì)模式轉(zhuǎn)換及回滯現(xiàn)象的影響,將含有外電路回路的流體模型擴(kuò)展為流體/電子MC混合模型。在該混合模型中,等離子體的宏觀行為由流體力學(xué)模型確定,電子與中性粒子的碰撞則由MC方法給出。首先應(yīng)用該混合模型,研究了不同氣壓下,電子能量分布函數(shù)(Electron Energy Distribution Function, EEDF)隨著模式轉(zhuǎn)換的變化。較高氣壓下,當(dāng)放電處于E模式時(shí),低能電子較少。H模式下,低能電子增加,高能電子損耗嚴(yán)重。然而在較低氣壓時(shí),E模式下并沒(méi)有出現(xiàn)較強(qiáng)的低能電子峰,這是由于氫氣是非Ramsauer效應(yīng)氣體,低能電子可以通過(guò)碰撞來(lái)得到有效加熱。并且高氣壓下,模式轉(zhuǎn)換前后EEDF變化比較明顯,而低氣壓下,EEDF變化較小:其次通過(guò)將混合模型與純流體模型計(jì)算結(jié)果進(jìn)行對(duì)比,分析了電子的動(dòng)力學(xué)效應(yīng)對(duì)模式轉(zhuǎn)換和回滯的影響。最后通過(guò)改變放電氣壓,研究了氣壓對(duì)模式轉(zhuǎn)換及回滯的影響。結(jié)果表明:放電由E模式轉(zhuǎn)換到H模式的臨界串聯(lián)電容值隨著氣壓的升高先減小后增大,在氣壓為50 mTorr時(shí)達(dá)到最小值。氣壓比較低時(shí),沒(méi)有回滯產(chǎn)生,隨著氣壓的逐漸升高,回滯開(kāi)始出現(xiàn),并且回滯環(huán)逐漸增大。在第五章中,給出了本文的主要結(jié)論、創(chuàng)新點(diǎn)以及對(duì)未來(lái)工作的展望。
[Abstract]:The Inductively Coupled Plasma (ICP) source has the advantages of low discharge pressure, high plasma density, easy to control uniformity, simple device and no external DC magnetic field. Therefore, it has been widely used in the fields of semiconductor technology and material processing. It is known that there are two kinds of discharge modes in the ICP source. Capacitive discharge mode (E mode) and inductive discharge mode (H mode). When regulating the external discharge parameters (such as coil current, input power, matching network series capacitance, discharge frequency and air pressure, etc.), plasma discharge mode will change, plasma parameters (such as plasma density, electron temperature, etc.), and electrical parameters of discharge circuit. The number (such as the coil current, voltage and equivalent circuit impedance) will change. When the discharge parameters are adjusted, the plasma parameters and electrical parameters of the discharge circuit will still be hysteresis. This type of discharge mode conversion and hysteresis will cause the instability of the discharge and have a great influence on the industrial process. Therefore, the mode conversion of the ICP source will be studied. It is of great significance to control and optimize the plasma process. Therefore, the purpose of this paper is to study the coupling of two-dimensional hydrodynamics model, equivalent loop model, electromagnetic field model and electronic Monte-Carlo (MC) model for a planar coil type ICP source. In the first chapter of the paper, the plasma micro processing technology is summarized, and several typical low-temperature plasma sources and their discharge characteristics are reviewed in detail. This paper describes the structure characteristics of the ICP source, the principle of excitation and the existing two kinds of discharge modes. At the same time, the theoretical and experimental research progress of ICP source mode conversion and hysteresis and some problems still exist. Finally, the contents and plans of this paper are given. In the second chapter, the external circuit circuit is introduced in detail. The model is composed of the equivalent circuit module of plasma, the electromagnetic module and the fluid mechanics module. The equivalent circuit module consists of four parts: the RF current source, the matching network, the capacitive branch and the inductive branch, which are used to calculate the electrical parameters of the equivalent circuit, such as the coil current, voltage and the impedance of each circuit element. The electromagnetic field module calculates the spatial distribution of the radiofrequency electromagnetic field in the ICP source discharge chamber by solving the Maxwell equation group. The fluid mechanics module obtains the macroscopic state parameters of the plasma, such as the particle density and the electron temperature by solving the fluid mechanics equations. In addition, this chapter also introduces the numerical values used in the simulation. In the third chapter, in the third chapter, using the fluid model containing the external circuit circuit, the numerical simulation method is used to systematically study the mode conversion and hysteresis behavior of the RF inductive coupling hydrogen plasma discharge mode. First, the electron density and temperature in the hydrogen plasma mode conversion process are analyzed by adjusting the series capacitance C1 in the matching network. The results show that with the increase of the C1, the discharge is dominated by the capacitive mode, the plasma density rises suddenly and the maximum electron density moves from the center of the chamber to the r=6 cm. At the same time, the electric temperature decreases suddenly, and the electron temperature distribution changes very well. The spatial distribution of the electromagnetic field varies little with the mode transformation, but the amplitude changes greatly, the capacitive electric field is significantly reduced and the inductive electric field is significantly increased. In addition, the effect of the external loop on the hysteresis of the C1 is studied through a round-trip adjustment. The results show that when the pressure is 100 mTorr, the discharge mode is from E when the C1 is increased. The mode is converted to H mode. When the C1 is reduced, the discharge mode is converted from the H mode to the E mode, and the C1 value of the E mode is converted to the H mode when the C1 value is different from the H mode to the E mode, and there is a clear hysteresis loop. The plasma electrical parameters, such as the coil current and voltage, the plasma resistance and inductance, and so on, are also evident with the C1. When the pressure is 20 mTorr, the C1 is adjusted, the plasma state parameters and the electrical parameters are obviously hopping, but there is no hysteresis. Finally, the effect of input current on the mode conversion and hysteresis is studied by adjusting the input current, and the input current is reached when the input current is reached. At a certain value, the discharge is converted from the E mode to the H mode. When the input current is reduced, the discharge is converted from the H mode to the E mode. When the C1 is adjusted, there is a obvious hysteresis when the pressure is higher. When the pressure is low, the return regulation input current is not stagnant. In the fourth chapter, the non local dynamic line of the electron in the ICP source is investigated. In order to influence the mode conversion and hysteresis, the fluid model with external circuit circuit is extended into a fluid / electronic MC mixture model. In the mixed model, the macroscopic behavior of the plasma is determined by the fluid mechanics model and the collision between electrons and neutral particles is given by the MC method. First, the mixed model is applied to study the different pressure. Under the high pressure, the Electron Energy Distribution Function (EEDF) changes with the mode conversion. When the discharge is in the E mode, the low energy electrons are less.H mode, the low energy electrons increase and the high energy electron loss is serious. However, at lower pressure, there is no strong low energy electron peak in E mode. Because hydrogen is a non Ramsauer effect gas, low energy electrons can be effectively heated by collision. And at high pressure, the change of EEDF is obvious before and after the mode conversion, and the change of EEDF is small under low pressure. Secondly, by comparing the mixed model with the results of the pure fluid model, the dynamic effect of the electron is analyzed. In the end, the effect of pressure on the mode conversion and hysteresis is studied by changing the discharge pressure. The results show that the critical series capacitance value of the discharge from E mode to H mode decreases and then increases with the increase of air pressure, and reaches the minimum at the pressure of 50 mTorr. In the fifth chapter, the main conclusions, innovations and prospects for future work are given in the fifth chapter.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O53

【相似文獻(xiàn)】

相關(guān)期刊論文 前4條

1 任國(guó)強(qiáng);楊麗;;針-板介質(zhì)阻擋放電3種放電模式特性[J];河北大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期

2 楊卓琴;陸啟韶;;神經(jīng)元Chay模型中不同類(lèi)型的簇放電模式[J];中國(guó)科學(xué)(G輯:物理學(xué) 力學(xué) 天文學(xué));2007年04期

3 李海濤;吳銳;嚴(yán)仲明;董亮;王豫;;一種電流型超導(dǎo)儲(chǔ)能脈沖變壓器的放電模式[J];低溫物理學(xué)報(bào);2013年01期

4 ;[J];;年期

相關(guān)會(huì)議論文 前4條

1 龔含嫣;張瑩瑩;梁培基;張溥明;;單個(gè)視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的放電模式特性[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

2 高飛;趙書(shū)霞;王友年;;射頻感性耦合等離子體放電模式跳變及回滯的實(shí)驗(yàn)研究[A];第十五屆全國(guó)等離子體科學(xué)技術(shù)會(huì)議會(huì)議摘要集[C];2011年

3 張艷嬌;李美生;;ML神經(jīng)元的放電模式及時(shí)滯對(duì)耦合神經(jīng)元同步的影響[A];第八屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議論文集[C];2008年

4 翟德紅;段利霞;唐旭暉;趙勇;陸啟韶;;耦合Hindmarsh-Rose神經(jīng)元的同步模式及轉(zhuǎn)遷(英文)[A];第十三屆全國(guó)非線性振動(dòng)暨第十屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集[C];2011年

相關(guān)博士學(xué)位論文 前3條

1 王曉龍;大氣壓脈沖介質(zhì)阻擋放電模式及活性氧粒子演化機(jī)制的數(shù)值模擬研究[D];山東大學(xué);2015年

2 張穎;大氣壓沿面型介質(zhì)阻擋放電光電特性實(shí)驗(yàn)和模擬研究[D];大連理工大學(xué);2016年

3 趙書(shū)霞;射頻感性耦合等離子體放電模式轉(zhuǎn)變機(jī)理的模擬研究[D];大連理工大學(xué);2010年

相關(guān)碩士學(xué)位論文 前10條

1 張瑞霞;兩類(lèi)Morris-Lecar模型的動(dòng)力學(xué)分析[D];華南理工大學(xué);2015年

2 楊紅亮;激光誘導(dǎo)熒光技術(shù)診斷大氣壓介質(zhì)阻擋放電中OH時(shí)空分布[D];大連理工大學(xué);2015年

3 劉晶;耦合pre-B(?)tzinger復(fù)合體中簇放電模式的轉(zhuǎn)遷機(jī)制的研究[D];北方工業(yè)大學(xué);2016年

4 牛宗濤;微秒脈沖滑動(dòng)放電模式及特性研究[D];鄭州大學(xué);2016年

5 楊富翔;介質(zhì)阻擋放電均勻性及模式轉(zhuǎn)變研究[D];大連理工大學(xué);2016年

6 郭卿超;開(kāi)放氬等離子體的射頻容性放電模式及診斷[D];大連理工大學(xué);2010年

7 曹淑紅;時(shí)滯耦合神經(jīng)元的動(dòng)力學(xué)行為研究[D];北方工業(yè)大學(xué);2012年

8 樊登貴;時(shí)滯對(duì)多時(shí)間尺度系統(tǒng)中簇放電的影響[D];北方工業(yè)大學(xué);2013年

9 邢潔;ESD荷電器件放電模式的測(cè)試條件研究[D];蘇州大學(xué);2007年

10 李志強(qiáng);三維神經(jīng)元的幾何形態(tài)重構(gòu)及其放電模式研究[D];西北師范大學(xué);2014年

,

本文編號(hào):1991273

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1991273.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)36422***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com