云南程�!e川斷裂帶斑巖地球化學(xué)特征及成因
本文選題:斑巖 + 巖石成因��; 參考:《昆明理工大學(xué)》2016年博士論文
【摘要】:程�!e川斷裂帶位于揚(yáng)子陸塊西緣,屬金沙江—紅河構(gòu)造帶的重要組成部分之一,受印度—?dú)W亞板塊遠(yuǎn)程碰撞效應(yīng)影響,沿該斷裂帶及其次級(jí)斷裂分布著大量的新生代堿性斑巖。近年來(lái),隨著與富堿斑巖有關(guān)的找礦工作投入加大,程�!e川構(gòu)造巖漿帶內(nèi),新發(fā)現(xiàn)了與永勝分水嶺堿性侵入巖有關(guān)具中型規(guī)模找礦前景的銅礦床,在賓川小龍?zhí)逗痛罄砉P架山富堿斑巖型銅金礦區(qū)也獲得了重大找礦突破,兩礦區(qū)有望達(dá)到中大型規(guī)模,引起了國(guó)內(nèi)外地質(zhì)學(xué)者的高度關(guān)注。與區(qū)內(nèi)馬廠(chǎng)箐銅鉬金礦相比,該帶內(nèi)富堿巖漿演化機(jī)制和成巖動(dòng)力學(xué)背景研究顯得十分薄弱。本博士論文從區(qū)域地質(zhì)背景分析入手,以分水嶺、小龍?zhí)逗凸P架山堿性侵入巖體為重點(diǎn)研究對(duì)象,在詳細(xì)的巖石學(xué)、巖相學(xué)研究基礎(chǔ)上,開(kāi)展了較為系統(tǒng)的巖石地球化學(xué)(主量、微量和稀土元素)、鋯石U-Pb年代學(xué)和Lu-Hf同位素等方面的研究,詳細(xì)劃分該構(gòu)造巖漿帶內(nèi)富堿侵入巖的巖石類(lèi)型,精確厘定了成巖年齡,深入探討了巖石成因,構(gòu)建了切合本區(qū)實(shí)際的成巖動(dòng)力學(xué)模型。最后,簡(jiǎn)要分析了與典型礦區(qū)斑巖(馬廠(chǎng)箐巖體)的成礦差異性原因。取得主要研究成果如下:(1)系統(tǒng)詳細(xì)劃分了研究區(qū)內(nèi)堿性斑巖的巖石類(lèi)型。巖石學(xué)和巖相學(xué)上,分水嶺斑巖主要由(黑云母)花崗閃長(zhǎng)斑巖、鉀長(zhǎng)花崗斑巖、閃長(zhǎng)正長(zhǎng)斑巖、二長(zhǎng)斑巖和少量煌斑巖組成:小龍?zhí)栋邘r主要由二長(zhǎng)花崗斑巖、(鉀長(zhǎng))花崗斑巖、黑云母花崗閃長(zhǎng)斑巖和黑云二長(zhǎng)斑巖等組成;筆架山斑巖主要由石英二長(zhǎng)斑巖、煌斑巖以及少量(鉀長(zhǎng))花崗閃長(zhǎng)斑巖組成。結(jié)合巖石地球化學(xué)特征,三個(gè)巖體則均是由長(zhǎng)英質(zhì)斑巖和煌斑巖組成。長(zhǎng)英質(zhì)斑巖雖在造巖礦物上有所不同,但結(jié)構(gòu)特征相似,應(yīng)為同源巖漿演化作用的結(jié)果;而煌斑巖在空間分布上顯由南向北(距金沙江斷裂距離由近及遠(yuǎn)),其規(guī)模和數(shù)量均呈遞減趨勢(shì),可能與深部斷裂通道和幔源鎂鐵質(zhì)巖漿上升侵位距離有關(guān)。(2)詳細(xì)分析了三個(gè)富堿侵入巖體的巖石地球化學(xué)特征。巖石地球化學(xué)特征顯示,三個(gè)巖體長(zhǎng)英質(zhì)斑巖具富堿、富鉀和準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)特征,屬高鉀鈣堿性—鉀玄巖系列巖石;具高Sr、高Sr/Y和(La/Yb)N匕值,低鎂、Y和HREE特征,顯較強(qiáng)的埃達(dá)克質(zhì)巖石地球化學(xué)特征;LILE(Rb、Ba、U、Th和Sr)和LREE富集,Nb和Ti)虧損和顯著的“TNT”負(fù)異常以及Eu弱或無(wú)負(fù)異常特征,反映源區(qū)巖漿具殼�;旌咸卣�,其形成與俯沖環(huán)境有關(guān)。相似的微量和稀土元素組成及其配分模式,表明長(zhǎng)英質(zhì)斑巖屬同源巖漿演化產(chǎn)物,有相同的源區(qū)特征和成巖環(huán)境�;桶邘r具富堿、高鉀、低鈦特征,屬鉀質(zhì)—超鉀質(zhì)鈣堿系列巖石,其稀土、微量元素特征與長(zhǎng)英質(zhì)斑巖相似,亦具“TNT”負(fù)異常,表明兩者源區(qū)特征和成巖環(huán)境類(lèi)似,但相近的∑REE含量,指明了兩者源區(qū)和巖漿演化機(jī)制不同。(3)運(yùn)用LA-ICP-MS鋯石U-Pb法精確厘定了研究區(qū)斑巖的成巖年齡。應(yīng)用鋯石U-Pb法,獲得3個(gè)巖體長(zhǎng)英質(zhì)斑巖成巖年齡整體介于35.6~34.5 Ma,煌斑巖成巖年齡為33.6 Ma,均處于青藏高原晚碰撞期(40~26 Ma)內(nèi)。高度一致的成巖年齡,表明長(zhǎng)英質(zhì)斑巖和煌斑巖同屬喜馬拉雅期古近紀(jì)始新世晚期巖漿活動(dòng)產(chǎn)物,兩者具有相同的成巖動(dòng)力學(xué)背景。(4)運(yùn)用Lu-Hf同位素對(duì)研究區(qū)長(zhǎng)英質(zhì)斑巖源區(qū)組成進(jìn)行了限定,并重新厘定了長(zhǎng)英質(zhì)斑巖的巖石成因類(lèi)型。三個(gè)巖體長(zhǎng)英質(zhì)斑巖鋯石具εHf(t)值負(fù)值多、正值少及對(duì)應(yīng)的古老地殼二階段模式年齡(672~1608 Ma)特點(diǎn),表明中元古代古老地殼物質(zhì)對(duì)其源區(qū)組分貢獻(xiàn)較大,而幔源物質(zhì)次之。結(jié)合巖相學(xué)和地球化學(xué)等指標(biāo),認(rèn)為長(zhǎng)英質(zhì)斑巖應(yīng)為具有C型埃達(dá)克質(zhì)巖石地球化學(xué)特征的類(lèi)I、S復(fù)合型富堿斑巖,其中不同巖體I型程度反映不同。(5)準(zhǔn)確界定了研究區(qū)長(zhǎng)英質(zhì)斑巖巖漿形成溫度。全巖鋯石飽和溫度計(jì)算結(jié)果,顯示分水嶺、小龍?zhí)逗凸P架山長(zhǎng)英質(zhì)斑巖巖漿形成溫度分別為730.02~785.30℃、757.86~789.01和748.75~778.68℃。相對(duì)一致的巖漿溫度,表明它們起源位置大致相同;普遍較高的巖漿溫度,反映幔源物質(zhì)對(duì)巖漿源區(qū)不但貢獻(xiàn)了物質(zhì)組分還提供了熱量。(6)深入分析了研究區(qū)長(zhǎng)英質(zhì)斑巖和煌斑巖的源區(qū)屬性。研究成果表明,煌斑巖起源于受俯沖板片流體交代的含金云母尖晶石—石榴子石相二輝橄欖巖過(guò)渡相的巖石圈富集地幔低程度(2%~10%)部分熔融,源區(qū)深度約80 km。長(zhǎng)英質(zhì)斑巖起源于約53 km處的加厚下地殼底部,源區(qū)巖漿主要由石榴角閃巖相下地殼低程度(10%)部分熔融形成,同時(shí)源區(qū)還遭受了少量底侵而來(lái)的俯沖板片流體交代的巖石圈富集地幔熔融組分(煌斑巖巖漿)的混染,源區(qū)具顯著的殼�;旌咸卣�,與第4點(diǎn)鋯石Hf同位素反映特征一致。(7)指出了研究區(qū)斑巖成巖動(dòng)力學(xué)背景,構(gòu)建了相應(yīng)的成巖動(dòng)力學(xué)模型。研究認(rèn)為,長(zhǎng)英質(zhì)斑巖和煌斑巖均形成于印度—?dú)W亞板塊晚碰撞期力學(xué)性質(zhì)由擠壓向伸展轉(zhuǎn)換背景下,與金沙江—紅河富堿斑巖帶形成背景一致。成巖動(dòng)力學(xué)機(jī)制為:隨著印度—?dú)W亞板塊進(jìn)入晚碰撞期(40~26 Ma)構(gòu)造應(yīng)力由擠壓轉(zhuǎn)變?yōu)樯煺?引起減壓對(duì)流作用發(fā)生,誘發(fā)高溫軟流圈上涌加熱巖石圈富集地幔發(fā)生部分熔融形成鎂鐵質(zhì)(煌斑巖)巖漿,部分鎂鐵質(zhì)熔體上升底侵加厚下地殼發(fā)生部分熔融并與之混染形成具殼�;旌咸卣鞯拈L(zhǎng)英質(zhì)巖漿。形成的鎂鐵質(zhì)巖漿和長(zhǎng)英質(zhì)斑巖巖漿沿主碰撞期(65~41 Ma)產(chǎn)生的金沙江—紅河走滑斷裂、程�!e川走滑斷裂及其派生的次級(jí)斷裂通道上升侵位形成煌斑巖和長(zhǎng)英質(zhì)斑巖。(8)分析了研究區(qū)三個(gè)斑巖體與馬廠(chǎng)箐富堿斑巖礦化差異性原因。從產(chǎn)出構(gòu)造位置、巖石特征、巖石地球化學(xué)特征和成巖年齡4個(gè)方面對(duì)比,認(rèn)為研究區(qū)長(zhǎng)英質(zhì)斑巖礦化強(qiáng)度和規(guī)模弱小,可能受程�!e川斷裂帶巖漿活動(dòng)強(qiáng)度及其深部斷裂通道連通性和巖漿分異程度等因素制約。
[Abstract]:The Cheng Hai Binchuan fault zone, located on the western margin of the Yangtze block, is one of the important parts of the Jinsha River Honghe tectonic belt, which is affected by the long-range impact of the India Eurasian plate. A large number of Cenozoic alkaline porphys are distributed along the fault zone and its secondary faults. In recent years, the prospecting work related to the alkali rich porphyry has increased. In the Hai Binchuan tectonic magma belt, a new copper deposit, which is related to the prospect of medium scale prospecting in the alkaline intrusive rocks of the Yongsheng watershed, has also been found. In the Binchuan Xiaolong Tan and the alkali rich porphyry copper gold mine of the Dali Beacon Hill, a major breakthrough has been obtained. The two mining area is expected to reach the medium and large scale model, which has aroused the high concern of the geologists at home and abroad. Compared with the Ma Changqing copper molybdenum gold deposit in the region, the research on the evolution mechanism of alkali rich magma and the dynamic background of diagenesis is very weak. This thesis begins with the analysis of regional geological background, focusing on the watershed, Xiaolong Tan and the alkaline intrusive rock mass of Beacon Hill, and has carried out the detailed petrology and petrography research. More systematic studies of Rock Geochemistry (principal, trace and rare earth elements), zircon U-Pb chronology and Lu-Hf isotopes have been studied in detail. The rock types of alkali rich intrusive rocks in the tectonic magma zone are detailedly divided, the age of diagenesis is determined accurately, petrogenesis is discussed in depth, and the actual diagenetic dynamic model of this area is constructed. Finally, The causes of metallogenic difference between the porphyry porphyry (MA Changqing rock mass) in typical mining area are briefly analyzed. The main achievements are as follows: (1) the rock types of alkaline porphyry in the study area are divided in detail. In petrology and petrography, the watershed porphyry is mainly composed of (Hei Yunmu) granodiorite, potassium long granite porphyry, diorite long porphyry, and two long. The porphyry is composed of a small number of porphyre: the Xiaolong Tan porphyry is mainly composed of two long granite porphyry, (potassium long) granite porphyry, black mica granodiorite porphyry and black cloud two long porphyry, and the Beacon Hill porphyry is composed mainly of quartz two porphyry, the porphyre and a small number of (potassium long) granodiorite porphyry. Combined with the geochemical characteristics of rock, three rock bodies are combined. The felsic porphyry is composed of the felsic porphyry and the porphyry. Although the felsic porphyry is different in rock forming minerals, the structure of the porphyry is similar, and it should be the result of the evolution of the homologous magma, while the spatial distribution of the porphyry is from the south to the North (far from the distance from the Jinsha River fault). The ascending emplacement distance of the channel and mantle derived mafic magma is related. (2) the rock geochemical characteristics of the three alkali rich intrusive rocks are analyzed in detail. The rock geochemical characteristics show that three pluton felsic porphyry is characterized by alkali rich, potassium rich and paralic - weak peraluminous characteristics, and is a high potassium calc alkaline - potassium basalt series rock; high Sr, high Sr/Y and (La/) Yb) N dagger value, low magnesium, Y and HREE characteristics, strong ADAC rock geochemical characteristics; LILE (Rb, Ba, U, Th and Sr) and LREE enrichment, Nb and significant negative anomalies and weak or unnegative anomalies, reflecting the mixture of crust and mantle of magma in the source region, which is related to the subduction environment. Similar trace and rare earth elements The composition and distribution pattern indicate that the felsic porphyry is a homologous magma evolution product, which has the same source area characteristics and diagenetic environment. The porphyry is characterized by alkali rich, high potassium and low titanium characteristics, and belongs to the potash ultralow calcite series rock. The rare earth and trace elements are similar to the felsic porphyry and have a negative TNT anomaly, indicating the characteristics of the two source regions and the characteristics of the two. The diagenetic environment is similar, but the similar content of the sigma REE indicates that the source area and the magma evolution mechanism are different. (3) using the LA-ICP-MS zircon U-Pb method to accurately determine the age of the diagenesis of the porphyry in the study area. By using the zircon U-Pb method, the age of the diagenesis of the 3 rock long feldspar porphyry is between 35.6 and 34.5 Ma, and the age of the porphyry is 33.6 Ma. In the late collision period of the Qinghai Xizang Plateau (40~26 Ma), the highly consistent diagenesis age indicates that the long felsic porphyry and the porphyry belong to the late Paleogene Eocene magma activity products of the Himalaya period, and they have the same diagenetic background. (4) the composition of the source area of the felsic porphyry in the study area was limited by the use of Lu-Hf isotopes. The petrogenetic types of the felsic porphyry are determined. The zircon of the three rocks of the felsic porphyry has more negative values of Hf (T), less positive value and corresponding age of the two stage model of the ancient crust (672~1608 Ma), indicating that the ancient crustal material of the Middle Proterozoic contributed to its source area larger, while the mantle source was second. It is considered that the felsic porphyry should be a kind of I and S complex alkali rich porphyry with the geochemical characteristics of the C type of the plex, and the degree of I type of different rock bodies is different. (5) the magma formation temperature of the felsic porphyry in the study area is accurately defined. The result of the full rock zircons saturation thermometer shows the watershed, the Xiaolong Tan and the Beacon Hill long feldspar. The formation temperature of porphyry magma is 730.02 ~ 785.30 C, 757.86 ~ 789.01 and 748.75 ~ 778.68 C. The relative uniform magma temperature shows that their origins are approximately the same, and the general high magma temperature shows that the mantle derived material not only contributed to the material component in the magma source area, but also provided the heat. (6) the deep analysis of the felsic substance in the study area was carried out. The source area of the porphyry and the porphyre shows that the porphyry originated from the low degree (2% to 10%) partial melting of the lithospheric enriched mantle with the transition phase of the gold mica spinel - pomegranite olidite from the subduction plate fluid. The source depth of the 80 km. long felsic porphyry originated from the thickened lower crust at about 53 km. The magma in the source area is mainly formed by partial melting of the low degree (10%) of the crust under the guava amphibolite facies. At the same time, the source area also suffers from a small amount of subducted subducted plate fluid metasomatism in the lithosphere enriched mantle melting component (the mantle magma). The source area is characterized by a significant mixture of crust and mantle, which is consistent with the characteristics of the fourth zircon Hf isotopes. (7) the diagenetic dynamic background of the porphyry in the study area is pointed out, and the corresponding diagenetic model is constructed. It is believed that the felsic porphyry and the porphyry are formed in the background of the mechanical properties of the India to Eurasian plate in the late collision period, which is consistent with the formation of the Jinsha River Honghe alkali rich porphyry zone. As the tectonic stress of the India Eurasian plate enters the late collision period (40~26 Ma), the tectonic stress is transformed from extrusion to extension, which causes the decompressed convection and induces the partial melting of the high temperature asthenosphere upwelling lithosphere enriched mantle to form the mafic magma, and the partial melting of the lower crust of the mfg melt and the partial melting of the lower crust. The mixed dyed and mixed staining forms the felsic magma with the mixture of crust and mantle. The mafic magma formed and the magma of the mafic magma and the felsic porphyry magma formed along the Jinsha River Honghe strike fault along the main collision period (65~41 Ma), and the zahai Binchuan strike slip fault and its derived secondary fault channels are ascending emplacement to form the porphyry and the felsic porphyry. (8) analysis The difference between the three porphyry rocks in the study area and the mineralization of the alkali rich porphyry in Ma Chang Qing. From the 4 aspects of the tectonic position, rock characteristics, rock geochemical characteristics and the age of diagenesis, it is considered that the mineralization intensity and size of the felsic porphyry in the study area are weak and small, which may be affected by the intensity of magmatic activity in the Cheng Hai Binchuan fracture zone and its deep fracture channel. Factors such as the degree of common and magmatic differentiation are restricted.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:P588.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳榮澤;張樹(shù)棟;來(lái)林;;內(nèi)蒙古烏蘭五臺(tái)地區(qū)三疊紀(jì)鋁質(zhì)A型花崗巖年代學(xué)及地球化學(xué)特征[J];地球科學(xué)與環(huán)境學(xué)報(bào);2015年06期
2 陳福川;王慶飛;李龔健;趙巖;;滇西哀牢山鎮(zhèn)沅煌斑巖~(40)Ar-~(39)Ar年代學(xué)和地球化學(xué)特征[J];巖石學(xué)報(bào);2015年11期
3 楊立強(qiáng);高雪;和文言;;義敦島弧晚白堊世斑巖成礦系統(tǒng)[J];巖石學(xué)報(bào);2015年11期
4 賴(lài)紹聰;秦江鋒;朱韌之;趙少偉;;揚(yáng)子地塊西緣天全新元古代過(guò)鋁質(zhì)花崗巖類(lèi)成因機(jī)制及其構(gòu)造動(dòng)力學(xué)背景[J];巖石學(xué)報(bào);2015年08期
5 邱嘯飛;楊紅梅;盧山松;譚娟娟;蔡應(yīng)雄;;揚(yáng)子陸核古元古代A型花崗巖的年代學(xué)與地球化學(xué)研究及其構(gòu)造意義[J];現(xiàn)代地質(zhì);2015年04期
6 榮惠鋒;徐恒;張賢峰;張苗紅;;云南永勝縣光茅山斑巖體含礦性探討[J];四川地質(zhì)學(xué)報(bào);2015年02期
7 汪曉偉;徐學(xué)義;馬中平;陳雋璐;朱小輝;孫吉明;崔方磊;;博格達(dá)造山帶東段芨芨臺(tái)子地區(qū)晚石炭世雙峰式火山巖地球化學(xué)特征及其地質(zhì)意義[J];中國(guó)地質(zhì);2015年03期
8 成永生;;廣西大廠(chǎng)礦田巖體地球化學(xué)特征及其成礦意義[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
9 王宏;林方成;李興振;施美鳳;;老撾及鄰區(qū)構(gòu)造單元?jiǎng)澐峙c構(gòu)造演化[J];中國(guó)地質(zhì);2015年01期
10 閆海卿;陳元;范模春;任建梅;姜珊;呂金梁;趙世翔;范超峰;;內(nèi)蒙古額濟(jì)納旗拐子湖地區(qū)花崗巖地球化學(xué)特征及其地質(zhì)意義[J];中國(guó)工程科學(xué);2015年02期
相關(guān)博士學(xué)位論文 前1條
1 王正海;云南鶴慶北衙富堿斑巖型金礦綜合信息找礦模型及預(yù)測(cè)評(píng)價(jià)[D];中國(guó)地質(zhì)大學(xué);2004年
,本文編號(hào):1949185
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1949185.html