基于平方根信息濾波的GNSS導(dǎo)航衛(wèi)星實(shí)時(shí)精密定軌理論與方法
本文選題:多系統(tǒng)實(shí)時(shí)精密定軌 + 平方根信息濾波。 參考:《武漢大學(xué)》2016年博士論文
【摘要】:GNSS技術(shù)發(fā)展至今,一直致力于為用戶提供實(shí)時(shí)、高精度、高可靠性的導(dǎo)航定位授時(shí)服務(wù)。GNSS高精度實(shí)時(shí)定位服務(wù)系統(tǒng)作為導(dǎo)航定位系統(tǒng)的有力支撐,通過提供高精度的實(shí)時(shí)軌道、鐘差、電離層產(chǎn)品等信息,使得任何時(shí)間全球任何地點(diǎn)的用戶可以實(shí)現(xiàn)高精度的定位。隨著實(shí)時(shí)產(chǎn)品質(zhì)量和可靠性的逐步提高,基于全球或區(qū)域跟蹤網(wǎng)的實(shí)時(shí)精密定位服務(wù)將廣泛應(yīng)用于低軌衛(wèi)星精密定軌、空間氣象監(jiān)測、地震監(jiān)測與海嘯預(yù)警、地球板塊運(yùn)動(dòng)與動(dòng)力學(xué)研究等多個(gè)領(lǐng)域,是目前GNSS應(yīng)用技術(shù)研究的熱點(diǎn)之一。穩(wěn)定可靠的高精度軌道是實(shí)現(xiàn)衛(wèi)星導(dǎo)航高精度定位服務(wù)的前提條件。導(dǎo)航定位中衛(wèi)星位置作為動(dòng)態(tài)基準(zhǔn),其軌道精度將直接影響到用戶的定位精度。隨著廣域范圍內(nèi)實(shí)現(xiàn)實(shí)時(shí)精密厘米級(jí)服務(wù)的PPP-RTK技術(shù)的提出,對(duì)衛(wèi)星軌道位置的實(shí)時(shí)性和精度提出了更高的要求。由于嚴(yán)重依賴于動(dòng)力學(xué)模型的精度,目前常用的基于軌道預(yù)報(bào)獲得實(shí)時(shí)軌道的方法存在不足與限制,尤其對(duì)于我國目前的區(qū)域北斗衛(wèi)星導(dǎo)航系統(tǒng),存在軌道力模型精度不高、不同姿態(tài)模式切換、軌道機(jī)動(dòng)等因素,預(yù)報(bào)軌道的精度和可靠性難以保證,迫切需要發(fā)展新的實(shí)時(shí)定軌理論方法、算法模型與軟件系統(tǒng),以提升北斗系統(tǒng)的高精度實(shí)時(shí)定位服務(wù)能力。本文圍繞GNSS實(shí)時(shí)高精度軌道濾波處理中的關(guān)鍵問題展開系統(tǒng)深入的研究。重點(diǎn)解決北斗衛(wèi)星姿態(tài)控制模型建立、地影期間實(shí)時(shí)軌道確定、軌道機(jī)動(dòng)處理等難點(diǎn)問題,在此基礎(chǔ)上提出了采用自適應(yīng)平方根信息濾波的實(shí)時(shí)軌道確定方法與策略,研制了基于濾波解算的多系統(tǒng)導(dǎo)航衛(wèi)星實(shí)時(shí)精密定軌軟件系統(tǒng),通過實(shí)測數(shù)據(jù)驗(yàn)證了濾波定軌算法模型的正確性以及軟件產(chǎn)品的性能。論文的主要研究工作和貢獻(xiàn)如下:1)從衛(wèi)星運(yùn)動(dòng)學(xué)模型、觀測模型和參數(shù)估計(jì)三個(gè)方面,系統(tǒng)研究了導(dǎo)航衛(wèi)星實(shí)時(shí)精密定軌的理論方法,主要包括衛(wèi)星運(yùn)動(dòng)方程離散化及攝動(dòng)力模型、觀測誤差改正及線性化、批處理解算采用的最小二乘估計(jì)方法和實(shí)時(shí)解算采用的平方根信息濾波方法。對(duì)本文實(shí)時(shí)定軌中采用的平方根信息濾波算法進(jìn)行了重點(diǎn)研究,給出濾波解算定軌處理流程后,推導(dǎo)了濾波定軌中非線性誤差和過程噪聲隨機(jī)函數(shù)模型。2)歸納分析了當(dāng)前各導(dǎo)航衛(wèi)星的偏航姿態(tài)模型以及用于姿態(tài)角估計(jì)的反向PPP算法,深入研究了北斗IGSO和MEO衛(wèi)星偏航姿態(tài)切換機(jī)制。針對(duì)北斗IGSO和MEO衛(wèi)星動(dòng)偏零偏姿態(tài)切換期間初始姿態(tài)模型偏差會(huì)嚴(yán)重影響精密定軌參數(shù)估值,使得反向PPP估計(jì)的姿態(tài)角偏離實(shí)際值的問題,提出了一種改進(jìn)的反向動(dòng)態(tài)PPP估計(jì)方法,成功估計(jì)出了北斗IGSO和MEO衛(wèi)星姿態(tài)模式切換期間姿態(tài)角的變化。基于估計(jì)的衛(wèi)星姿態(tài)角,建立了北斗IGSO和MEO衛(wèi)星的偏航姿態(tài)經(jīng)驗(yàn)?zāi)P?并通過精密定軌結(jié)果驗(yàn)證分析了模型的準(zhǔn)確性。并在本文北斗衛(wèi)星實(shí)時(shí)精密定軌的研究中,均采用該偏航姿態(tài)模型對(duì)各相關(guān)誤差項(xiàng)進(jìn)行改正。3)研究了實(shí)時(shí)精密定軌觀測模型精化與質(zhì)量控制方法,實(shí)現(xiàn)了多系統(tǒng)實(shí)時(shí)定軌濾波處理中模糊糊度參數(shù)的固定。通過實(shí)測數(shù)據(jù)進(jìn)行驗(yàn)證分析,結(jié)果表明:相比于浮點(diǎn)解,模糊度固定后GPS和北斗衛(wèi)星三維軌道精度平均提高了2cm左右。4)針對(duì)機(jī)動(dòng)衛(wèi)星實(shí)時(shí)精密定軌的難題,深入研究了衛(wèi)星機(jī)動(dòng)的實(shí)時(shí)探測、機(jī)動(dòng)期間衛(wèi)星精密軌道的確定以及機(jī)動(dòng)后精密軌道的快速恢復(fù)等關(guān)鍵問題。提出基于預(yù)測殘差對(duì)衛(wèi)星機(jī)動(dòng)進(jìn)行實(shí)時(shí)探測,探測到衛(wèi)星機(jī)動(dòng)后,采用自適應(yīng)平方根信息濾波的方法確定機(jī)動(dòng)期間衛(wèi)星的實(shí)時(shí)軌道。通過北斗C05和C08衛(wèi)星機(jī)動(dòng)期間的實(shí)測數(shù)據(jù)對(duì)該方法的有效性進(jìn)行了驗(yàn)證,結(jié)果表明:該方法可以有效探測出衛(wèi)星機(jī)動(dòng),能有效避免因軌道機(jī)動(dòng)造成的濾波發(fā)散,機(jī)動(dòng)期間衛(wèi)星對(duì)應(yīng)測站的最大殘差在0.3m以內(nèi),由于自適應(yīng)濾波可以保持解算參數(shù)的連續(xù)性,大大縮短了機(jī)動(dòng)后精密軌道恢復(fù)時(shí)間,機(jī)動(dòng)結(jié)束后的3-6h定軌精度即可恢復(fù)至機(jī)動(dòng)前的正常水平。5)分析驗(yàn)證了實(shí)時(shí)精密定軌濾波算法對(duì)GPS衛(wèi)星地影期間的適用性。結(jié)果表明:地影衛(wèi)星的實(shí)時(shí)濾波軌道顯著優(yōu)于IGU超快速產(chǎn)品的實(shí)時(shí)軌道,在濾波解算時(shí)增大地影期間軌道參數(shù)的過程噪聲可進(jìn)一步提高GPS BLOCK IIA地影衛(wèi)星的三維軌道精度。6)基于武漢大學(xué)導(dǎo)航數(shù)據(jù)綜合處理軟件(PANDA)平臺(tái),開發(fā)了基于平方根信息濾波的多系統(tǒng)導(dǎo)航衛(wèi)星實(shí)時(shí)精密定軌系統(tǒng)。通過一個(gè)月實(shí)測數(shù)據(jù)對(duì)本文提出的方法與研制的軟件系統(tǒng)進(jìn)行了驗(yàn)證分析,結(jié)果表明:GPS和GLONASS實(shí)時(shí)軌道與IGS事后精密軌道相比,三維精度分別為6.7cm和9.3cm.北斗IGSO和MEO衛(wèi)星SLR檢核殘差平均偏差在10cm以內(nèi);GEO衛(wèi)星SLR檢核平均偏差為20.7cm,相比于事后軌道,與SLR的系統(tǒng)性偏差減小了20cm左右。通過采用實(shí)時(shí)濾波軌道和預(yù)報(bào)軌道兩種方案對(duì)實(shí)時(shí)衛(wèi)星鐘差估計(jì),證實(shí)了濾波軌道可以有效避免因?yàn)轭A(yù)報(bào)軌道不連續(xù)引起的鐘差跳變問題。最后基于動(dòng)態(tài)精密單點(diǎn)定位算例對(duì)軟件解算的實(shí)時(shí)產(chǎn)品進(jìn)行了驗(yàn)證,定位結(jié)果表明:相比于基于預(yù)報(bào)軌道的實(shí)時(shí)產(chǎn)品,采用本文濾波定軌軟件解算的實(shí)時(shí)產(chǎn)品可以顯著提高北斗單系統(tǒng)的動(dòng)態(tài)定位精度,多系統(tǒng)精密定位用戶可以實(shí)現(xiàn)水平3cm,高程5cm的定位精度。
[Abstract]:GNSS technology has been developing to provide users with real-time, high precision, high reliability navigation and positioning service.GNSS high precision real-time positioning service system as a powerful support for navigation and positioning system, by providing high precision real-time orbit, clock difference, ionospheric products and other information, any time in any place of the world to use With the gradual improvement of real-time product quality and reliability, real-time precision positioning service based on global or regional tracking network will be widely used in many fields, such as low orbit satellite precision orbit determination, spatial meteorological monitoring, earthquake monitoring and tsunami early warning, earth plate motion and dynamics research, and so on, is GNSS One of the hotspots in the research of application technology. Stable and reliable high precision orbit is the prerequisite for high precision positioning service for satellite navigation. The orbit accuracy of the satellite position in the navigation and positioning will directly affect the positioning accuracy of the user. With the implementation of the PPP-RTK technology in the wide area real reality, the precision centimeter level service is proposed. There is a higher requirement for the real-time and precision of the satellite orbit position. Because of the serious dependence on the accuracy of the dynamic model, the current methods of obtaining the real-time orbit based on the orbit prediction are insufficient and limited. Especially for the current regional Beidou satellite navigation system, the accuracy of the orbit force model is not high and different. Such factors as attitude mode switching and orbit maneuver are difficult to ensure the accuracy and reliability of the forecast orbit. It is urgent to develop a new theory and method of real-time orbit determination, algorithm model and software system to improve the high precision real-time positioning service ability of the Beidou system. This paper focuses on the key problems in the GNSS real-time high precision track filtering process. In order to solve some difficult problems, such as the establishment of the attitude control model of the Beidou satellite, the real time orbit determination and the trajectory maneuver during the earth shadow, a real-time orbit determination method and strategy using adaptive square root information filtering is proposed, and the real-time precise orbit determination of the multi system navigation satellite based on the filtering is developed. The software system validates the correctness of the filtering and orbit determination algorithm and the performance of the software products through the measured data. The main research work and contribution of this paper are as follows: 1) from the three aspects of the satellite kinematics model, the observation model and the parameter estimation, the theoretical method of the precise orbit determination of the navigation satellite is systematically studied, including the satellite transportation. The dynamic equation discretization and perturbation model, the correction and linearization of observation error, the least squares estimation method used in batch processing and the square root information filtering method used in real time calculation. The paper focuses on the square root information filtering algorithm used in the real-time orbit determination, and gives the derivation of the filtering solution for the orbit determination process. The nonlinear error and the random function model.2 for the process noise are filtered and analyzed. The attitude model of the current navigation satellites and the inverse PPP algorithm for attitude angle estimation are analyzed. The attitude switching mechanism of the Beidou IGSO and the MEO satellite is deeply studied. The state model deviation will seriously affect the estimation of the precise orbit determination parameters, making the attitude angle of the reverse PPP estimation deviating from the actual value. An improved reverse dynamic PPP estimation method is proposed. The attitude angle changes during the attitude mode switching of the Beidou IGSO and the MEO satellite are estimated successfully. Based on the estimated satellite attitude angle, the Beidou IGSO is established. The empirical model of the yaw attitude of the MEO satellite and the accuracy of the model are verified by the precision orbit determination. In this paper, in the study of the real-time precision orbit determination of the Beidou satellite, all the related error terms are corrected by the yaw model.3), and the precision and quality control method of the real-time precision orbit determination model is studied. The fuzzy paste parameters are fixed in the multi system real-time orbit determination and filtering processing. The results show that, compared with the floating point, the accuracy of the GPS and the Beidou satellite's three-dimensional orbit accuracy is increased by about 2cm.4 after the fuzzy degree is fixed. The key problems of the detection, the determination of the precise orbit of the satellite during the maneuver and the rapid recovery of the precision orbit after maneuvering are discussed. The real-time detection of the satellite based on the prediction residual is proposed. After the detection of the satellite maneuver, the adaptive square root information filter is used to determine the real time orbit of the mobile satellite. Through the Beidou C05 and the C08 satellite The validity of the method is verified by the measured data during the maneuver. The result shows that the method can effectively detect the satellite maneuver, and can effectively avoid the filtering divergence caused by the orbit maneuver. The maximum residual error of the satellite corresponding to the station is within 0.3m during the maneuver, and the self adaptive filtering can maintain the continuity of the calculated parameters. The precision track recovery time after maneuver is greatly shortened, and the accuracy of the 3-6h orbit determination after the maneuver is restored to the normal level.5 before the maneuver. The analysis verifies the applicability of the real-time precision orbit determination filter algorithm for the GPS satellite in the shadow period. The results show that the real-time filter track of the earth shadow satellite is significantly better than the real-time orbit of the IGU super fast product. The process noise of the orbit parameters during the filtering calculation during the increase of ground shadow can further improve the three-dimensional orbit accuracy of the GPS BLOCK IIA earth shadow satellite. Based on the integrated navigation data processing software (PANDA) platform of the Wuhan University, the real-time precision orbit determination system of the multi system navigation satellite based on the square root information filtering is developed. The data is verified and analyzed by the method proposed in this paper and the developed software system. The results show that, compared with the IGS post precision orbit, the GPS and GLONASS real-time tracks are less than 10cm, respectively, for 6.7cm and 9.3cm. Beidou IGSO and MEO SLR, and GEO satellites SLR check the average deviation is 20.7cm, compared to the events. The systematic deviation from the SLR is reduced by about 20cm. By using two schemes of real-time filtering orbit and forecast orbit, it is proved that the filter track can effectively avoid the clock difference jump problem caused by the prediction of the discontinuous orbit. Finally, the software is solved in real time based on the dynamic precision single point location calculation example. The product has been verified. The results show that the real-time product can significantly improve the dynamic positioning accuracy of the Beidou single system compared to the real-time product based on the forecast orbit. The positioning accuracy of the horizontal 3cm and the elevation 5cm can be realized by the multi system precision positioning user.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P228.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閆娜;;江蘇省GNSS連續(xù)運(yùn)行參考站網(wǎng)項(xiàng)目通過驗(yàn)收[J];測繪通報(bào);2007年02期
2 ;獲境外專業(yè)機(jī)構(gòu)青睞,合眾思?jí)迅呔獹NSS產(chǎn)品邁入世界前列[J];北京測繪;2007年02期
3 ;中國GNSS技術(shù)打破歐美壟斷高精度測量產(chǎn)品角逐國際市場[J];江西測繪;2007年02期
4 ;合眾思?jí)勋@海外定單標(biāo)志中國GNSS踏上自主創(chuàng)新成果產(chǎn)業(yè)化之路[J];現(xiàn)代測繪;2007年04期
5 ;十年中海達(dá) 中國GNSS產(chǎn)業(yè)化十年——中海達(dá)10周年慶典活動(dòng)拉開序幕[J];測繪技術(shù)裝備;2009年03期
6 楊永平;段德磊;;多功能手持GNSS在電力行業(yè)的應(yīng)用[J];電力與電工;2009年03期
7 薄萬舉;黃立人;李軍;程增杰;宋兆山;許明元;李文靜;李文一;;GNSS野外檢定場[J];測繪科學(xué);2009年S1期
8 季宇虹;王讓會(huì);;全球?qū)Ш蕉ㄎ幌到y(tǒng)GNSS的技術(shù)與應(yīng)用[J];全球定位系統(tǒng);2010年05期
9 董春來;周立;史建青;;GNSS多功能實(shí)驗(yàn)室的構(gòu)建與實(shí)踐[J];實(shí)驗(yàn)室研究與探索;2011年02期
10 Zhan Wei;Zhu Shuang;Yang Bo;Wu Yanqiang;Liu Zhiguang;Meng Xiangang;;Effects of the differences between the ITRF2000 and ITRF2005 models in GNSS data processing[J];Geodesy and Geodynamics;2013年04期
相關(guān)會(huì)議論文 前10條
1 張慧君;李孝輝;;GNSS系統(tǒng)時(shí)間偏差及其監(jiān)測與預(yù)報(bào)[A];2009全國時(shí)間頻率學(xué)術(shù)會(huì)議論文集[C];2009年
2 ;Supporting capability analysis of present spectrum management resources to GNSS IDM in China[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年
3 朱旭;;全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)在空中交通管理中的應(yīng)用進(jìn)展[A];中國通信學(xué)會(huì)第六屆學(xué)術(shù)年會(huì)論文集(上)[C];2009年
4 董紹武;;GNSS時(shí)間系統(tǒng)及其互操作[A];2009全國虛擬儀器大會(huì)論文集(二)[C];2009年
5 孫曉波;李冶天;;多模GNSS高精度授時(shí)在電力系統(tǒng)中的應(yīng)用分析[A];經(jīng)濟(jì)發(fā)展方式轉(zhuǎn)變與自主創(chuàng)新——第十二屆中國科學(xué)技術(shù)協(xié)會(huì)年會(huì)(第四卷)[C];2010年
6 胡曉;高偉;李本玉;;GNSS衛(wèi)星導(dǎo)航系統(tǒng)關(guān)鍵技術(shù)的研究與思考[A];《測繪通報(bào)》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
7 高井祥;閆文林;王堅(jiān);;礦山變形災(zāi)害GNSS現(xiàn)代化監(jiān)測技術(shù)研究[A];《測繪通報(bào)》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
8 馬利華;韓延本;;全球衛(wèi)星導(dǎo)航系統(tǒng)(GNSS)概述[A];中國地球物理學(xué)會(huì)第二十三屆年會(huì)論文集[C];2007年
9 ;A study of ionospheric scintillation effects on Differential GNSS[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S08衛(wèi)星導(dǎo)航模型與方法[C];2012年
10 甄衛(wèi)民;韓超;杜黎明;陳麗;;我國GNSS開放服務(wù)中的干擾檢測與減緩計(jì)劃[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年
相關(guān)重要報(bào)紙文章 前10條
1 王娜;我GNSS技術(shù)打破國外壟斷[N];科技日報(bào);2007年
2 陶渝;重慶建成國土資源GNSS網(wǎng)絡(luò)信息系統(tǒng)[N];中國測繪報(bào);2011年
3 記者 謝必如 特約記者 白文起 通訊員 陶渝;重慶建成國土資源GNSS網(wǎng)絡(luò)系統(tǒng)[N];中國國土資源報(bào);2011年
4 王巖;包頭用GNSS管理市政布局[N];中國建設(shè)報(bào);2010年
5 甘勃;“天眼”邁進(jìn)GNSS時(shí)代[N];大眾科技報(bào);2007年
6 王立彬;中國全球衛(wèi)星導(dǎo)航系統(tǒng),奪下千萬美元大單[N];新華每日電訊;2007年
7 通訊員 彭祥榮;“陸態(tài)網(wǎng)”民勤GNSS基準(zhǔn)站投入試運(yùn)行[N];中國氣象報(bào);2010年
8 記者 裴蕾;測繪氣象共建GNSS基準(zhǔn)站[N];四川日報(bào);2010年
9 王雅麗;實(shí)施國際化戰(zhàn)略[N];中國測繪報(bào);2010年
10 記者 張敏霞 通訊員 王存林;陸態(tài)網(wǎng)沱沱河GNSS基準(zhǔn)站建成并試運(yùn)行[N];格爾木日報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 江鵬;地基GNSS探測2D/3D大氣水汽分布技術(shù)研究[D];武漢大學(xué);2014年
2 徐韶光;利用GNSS獲取動(dòng)態(tài)可降水量的理論與方法研究[D];西南交通大學(xué);2014年
3 李磊;基于GNSS的電離層總電子含量的預(yù)測與應(yīng)用研究[D];大連海事大學(xué);2015年
4 陳良;機(jī)載GNSS/SINS組合精密導(dǎo)航關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
5 郭瑤;慣性輔助的高動(dòng)態(tài)GNSS基帶信號(hào)跟蹤技術(shù)[D];國防科學(xué)技術(shù)大學(xué);2013年
6 甘雨;GNSS/INS組合系統(tǒng)模型精化及載波相位定位測姿[D];解放軍信息工程大學(xué);2015年
7 李俊毅;GNSS動(dòng)態(tài)相對(duì)定位算法研究[D];解放軍信息工程大學(xué);2013年
8 任燁;多場景下的GNSS完好性監(jiān)測方法研究[D];中國科學(xué)院研究生院(國家授時(shí)中心);2016年
9 陳華;基于原始觀測值的GNSS統(tǒng)一快速精密數(shù)據(jù)處理方法[D];武漢大學(xué);2015年
10 郭博峰;單站高頻GNSS求解同震位移的新方法及聯(lián)合強(qiáng)震儀的地震預(yù)警應(yīng)用研究[D];武漢大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 劉成;GNSS-R應(yīng)用于測量表層土壤濕度及軟件設(shè)計(jì)[D];中國地質(zhì)大學(xué)(北京);2015年
2 高榮祥;基于GNSS信號(hào)的無源雷達(dá)目標(biāo)探測研究[D];中國地質(zhì)大學(xué)(北京);2015年
3 陳聞亞;基于Internet的GNSS高精度位置服務(wù)平臺(tái)研究與實(shí)現(xiàn)[D];西南交通大學(xué);2015年
4 楊晨云鸝;GNSS在地震矩反演中的應(yīng)用研究[D];西南交通大學(xué);2015年
5 張U,
本文編號(hào):1905788
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1905788.html