天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

分層彈性與孔隙介質(zhì)中彈性波場(chǎng)的互易關(guān)系

發(fā)布時(shí)間:2018-05-09 22:36

  本文選題:互易性 + 孔隙介質(zhì); 參考:《哈爾濱工業(yè)大學(xué)》2016年博士論文


【摘要】:波動(dòng)互易關(guān)系是同一介質(zhì)或結(jié)構(gòu)的兩種波動(dòng)狀態(tài)之間的關(guān)系,常用于天然地震模擬與震源反演、地球物理測(cè)井、地震勘探等地學(xué)問(wèn)題中,也可用于工業(yè)和醫(yī)學(xué)的超聲無(wú)損檢測(cè)領(lǐng)域。前人建立了幾種點(diǎn)源在均勻介質(zhì)中的互易關(guān)系,但對(duì)于其在流固分區(qū)均勻介質(zhì)中激發(fā)波場(chǎng)的互易關(guān)系,以及其他類型點(diǎn)源在均勻介質(zhì)中激發(fā)波場(chǎng)的互易關(guān)系,研究得還不充分,這使得互易關(guān)系在工程中的應(yīng)用受到阻礙。本文推導(dǎo)流固分層介質(zhì)和孔隙介質(zhì)中幾類點(diǎn)源兩兩之間激發(fā)波場(chǎng)的互易關(guān)系,并采用數(shù)值實(shí)驗(yàn)闡釋這些互易關(guān)系,論述其在波場(chǎng)計(jì)算方面的應(yīng)用意義。地震矩張量是與互易性相關(guān)聯(lián)、在地震學(xué)中有重要意義的物理量,但它是針對(duì)彈性介質(zhì)推導(dǎo)的?紤]到震源位于孔隙巖石層,本文通過(guò)推導(dǎo)獲得了孔隙介質(zhì)位錯(cuò)輻射波場(chǎng)的等效地震矩張量表達(dá)式,計(jì)算并分析了波場(chǎng)的特性。論文在以下幾個(gè)方面取得了進(jìn)展:給出了聲波測(cè)井中常用的偶極和四極聲源的等效體力,在此基礎(chǔ)上獲得了流固分層介質(zhì)中點(diǎn)源激發(fā)波場(chǎng)的互易關(guān)系,包括集中力、爆炸源、雙力偶源、偶極源和四極源。采用三維時(shí)域有限差分(FDTD)算法,針對(duì)由彈性地層與流體井孔組合的介質(zhì)模型,編程計(jì)算了聲源分別位于井內(nèi)和井外時(shí)的波場(chǎng),通過(guò)數(shù)值結(jié)果闡釋了互易關(guān)系。結(jié)果表明:無(wú)論發(fā)射源和接收點(diǎn)均位于井內(nèi)流體中,還是分別處于井內(nèi)流體或井外地層中,只要發(fā)射源和接收信號(hào)在類型和指向這兩方面滿足本文給出的互易條件,原狀態(tài)和互易狀態(tài)下的計(jì)算波形曲線就重合。數(shù)值實(shí)驗(yàn)還表明:當(dāng)原狀態(tài)與互易狀態(tài)的發(fā)射源和接收器都位于井內(nèi)時(shí),互易物理量的井外界面微弱反射波的波形也重合。特別地,通過(guò)記錄單極源激發(fā)聲場(chǎng)在井軸上的水平位移(或記錄水平偶極源激發(fā)聲場(chǎng)在井軸上的聲壓),可以有效抑制接收信號(hào)中的井孔導(dǎo)波,加強(qiáng)對(duì)井外界面反射波的提取效果,這對(duì)于當(dāng)前正在研制的井中遠(yuǎn)探測(cè)成像儀的設(shè)計(jì)有指導(dǎo)意義。論文通過(guò)算例闡明了互易關(guān)系在檢驗(yàn)數(shù)值算法方面的適用性和局限性,指出:應(yīng)用互易關(guān)系可在復(fù)雜模型中檢驗(yàn)算法和源的施加的正確性,但不能檢驗(yàn)界面處理的正確性;應(yīng)用互易關(guān)系,可以簡(jiǎn)化波場(chǎng)模擬的計(jì)算量;诳紫督橘|(zhì)Biot方程組推導(dǎo)了孔隙介質(zhì)位錯(cuò)的等效地震矩張量,發(fā)現(xiàn)孔隙介質(zhì)中的位錯(cuò)需要通過(guò)兩個(gè)獨(dú)立的地震矩張量描述,它們分別作用于孔隙單元整體和孔隙流體上。整體地震矩張量具有傳統(tǒng)的彈性介質(zhì)地震矩張量的意義,而流體地震矩張量則是孔隙介質(zhì)特有的,引起二者的因素包括固相位錯(cuò)和經(jīng)斷層面向周圍巖石的流體注入。對(duì)于張開(kāi)位錯(cuò),需兩個(gè)地震矩共同描述;對(duì)于剪切位錯(cuò),流體地震矩為零,剪切位錯(cuò)等效為孔隙單元整體上的雙力偶;對(duì)于注入源,兩個(gè)地震矩同為各向同性張量,且對(duì)角線元素比值由介質(zhì)參數(shù)決定。給出了孔隙介質(zhì)地震矩張量輻射位移場(chǎng)表達(dá)式,發(fā)現(xiàn)流體地震矩僅影響輻射縱波,不影響輻射橫波。針對(duì)整體和流體地震矩同為單位張量的計(jì)算表明,流體地震矩僅對(duì)輻射慢縱波有較大影響,因此在計(jì)算無(wú)限大介質(zhì)遠(yuǎn)距離輻射波場(chǎng)時(shí)流體地震矩可以忽略,但當(dāng)計(jì)算近距離波場(chǎng)時(shí)或計(jì)算遠(yuǎn)距離長(zhǎng)時(shí)間的流體擴(kuò)散效應(yīng)時(shí),流體地震矩不可忽略。進(jìn)一步的計(jì)算表明,對(duì)于非均勻孔隙介質(zhì),當(dāng)源距離界面很近時(shí),流體地震矩激發(fā)的慢縱波在衰減前就達(dá)到界面并轉(zhuǎn)化為快縱波和橫波,因此可以對(duì)遠(yuǎn)距離波場(chǎng)產(chǎn)生明顯影響?紤]震電效應(yīng)的計(jì)算還表明,流體地震矩對(duì)于輻射電磁波有較強(qiáng)影響。得到了孔隙介質(zhì)中幾類點(diǎn)源激發(fā)波場(chǎng)的互易關(guān)系,包括整體集中力、流體集中力、注入源、整體地震矩、流體地震矩和爆炸源。給出了流體-孔隙介質(zhì)分層結(jié)構(gòu)中體力形式和點(diǎn)源波場(chǎng)互易關(guān)系。采用孔隙地層井孔模型下三維FDTD數(shù)值實(shí)驗(yàn)闡釋了互易關(guān)系。通過(guò)井內(nèi)單極源和井外爆炸源的互易實(shí)驗(yàn)證明了簡(jiǎn)單地采用彈性介質(zhì)互易關(guān)系代替孔隙介質(zhì)互易關(guān)系會(huì)造成互易物理量波形不重合。在考慮孔隙介質(zhì)震電效應(yīng)的情況下,基于Pride震電耦合波控制方程組獲得了孔隙介質(zhì)中震源與電偶極子和磁偶極子激發(fā)波場(chǎng)的互易關(guān)系。通過(guò)格林函數(shù)法模擬無(wú)限大均勻孔隙介質(zhì)中集中力和電偶極子的輻射震電耦合波場(chǎng)并闡釋互易關(guān)系,發(fā)現(xiàn)如果互易關(guān)系中忽略孔隙介質(zhì)特有的滲流位移項(xiàng),將導(dǎo)致互易物理量波形在輻射電磁波部分不重合。采用解析方法模擬水平分層結(jié)構(gòu)中地表集中力與電偶極子激發(fā)的震電波場(chǎng),針對(duì)反射波闡釋互易關(guān)系,互易物理量波形完全重合,這表明在地震勘探中震電和電震方法可以在一定程度上相互替代。計(jì)算了地下雙力偶源與電偶極子、磁偶極子激發(fā)波場(chǎng),其互易物理量波形完全重合。最后給出了流體-孔隙介質(zhì)分層結(jié)構(gòu)中震電波場(chǎng)互易關(guān)系。這一工作對(duì)于震電測(cè)井、震電勘探的波場(chǎng)分析、對(duì)于地震同震電磁場(chǎng)的模擬具有重要意義。
[Abstract]:The relationship between fluctuation and reciprocity is the relationship between the two wave states of the same medium or structure. It is often used in the field of natural seismic simulation and source inversion, geophysical well logging, seismic exploration and other geosciences, and can also be used in the field of ultrasonic nondestructive testing of industry and medicine. The reciprocity relation between the excited wave field in the fluid solid partition homogeneous medium and the reciprocity relation of the excited wave field of the other type point source in the homogeneous medium is not fully studied. This makes the application of the reciprocity in the engineering obstructed. This paper derives the interaction between the excited wave fields of several kinds of point sources 22 in the fluid solid layered medium and the porous medium. We use numerical experiments to explain these reciprocity relations and discuss its application significance in the field of wave field calculation. The seismic moment tensor is an important physical quantity associated with reciprocity and in seismology, but it is derived from the elastic medium. Considering the source in the pore rock layer, the pore medium is obtained by derivation. The equivalent seismic moment tensor expression of the dislocation radiation wave field is expressed and the characteristics of the wave field are calculated and analyzed. The paper has made some progress in the following aspects: the equivalent physical strength of the common dipole and quadrupole source in the acoustic logging is given. On this basis, the reciprocity relation of the excitation wave field of the point source in the fluid solid layered medium is obtained, including the concentrated force and the explosion. The source, double couple source, dipole source and quadrupole source are used to calculate the wave field of the sound source respectively in the well and outside the well by using the three-dimensional finite difference time domain (FDTD) algorithm. The results show that both the source and the receiving point are located in the well. In the fluid, in the fluid or in the well field respectively, as long as the source and the receiving signal can meet the reciprocity conditions given in the two aspects, the calculated waveform curves of the original state and reciprocity coincide. The numerical experiment also shows that the source and receiver of the original state and reciprocity are all located in the well. In particular, the horizontal displacement of the sound field on the well axis by recording monopole source (or recording the sound pressure on the shaft by recording the horizontal dipole source) by recording a monopole source, can effectively suppress the borehole guide wave in the received signal and strengthen the extraction effect of the reflection wave outside the well interface. The design of the remote detection imager is of guiding significance in the well developed well. This paper illustrates the applicability and limitation of the reciprocity relationship in the test of numerical algorithm through an example. It is pointed out that the application of reciprocity can test the correctness of the algorithm and source in the complex model, but it can not test the correctness of the interface treatment; and the application is interrelated. Based on the Biot equations of porous media, the equivalent seismic moment tensor of pore medium dislocation is derived. It is found that the dislocation in the porous medium is described by two independent seismic moment tensors, which are respectively acting on the whole and pore fluid of the pore unit. The seismic moment tensor of the elastic medium, while the fluid seismic moment tensor is unique to the pore medium, causes the two factors including the solid phase error and the fluid injection through the surrounding rock through the fault. For the open dislocation, two seismic moments are described together; for the shear dislocation, the fluid seismic moment is zero, and the shear dislocation is equivalent to the pore. The two seismic moment of the injection source is the same as the Isotropic Tensor, and the ratio of the diagonal element is determined by the medium parameters. The expression of the radiation displacement field of the seismic moment tensor of the porous medium is given, and it is found that the fluid seismic moment only affects the radiation longitudinal wave and does not affect the radiation transverse wave. The calculation of tensor shows that the fluid seismic moment has a great influence on the slow longitudinal wave of radiation, so the fluid seismic moment can be ignored when calculating the long distance radiation wave field of the infinite medium, but the fluid seismic moment can not be ignored when calculating the near distance wave field or the long long long distance fluid diffusion effect. Further calculation shows that the fluid seismic moment can not be ignored. When the source distance interface is very close, the slow longitudinal wave induced by the fluid seismic moment reaches the interface and turns into the fast longitudinal wave and the transverse wave before the attenuation. Therefore, it can have an obvious influence on the long distance wave field. The calculation of the seismic effect also shows that the fluid seismic moment has a strong influence on the radiation electromagnetic wave. Kong Xijie has been obtained. The reciprocity relation between several kinds of point sources excited wave field, including the whole concentration force, the fluid concentration force, the injection source, the integral seismic moment, the fluid seismic moment and the explosion source, is given. The reciprocity relation between the physical form and the point source wave field in the fluid porous media stratified structure is given. The reciprocity relation is explained by the three-dimensional FDTD numerical experiment under the pore formation hole model. Through the reciprocity experiments of the unipolar source and the explosion source outside the well, it is proved that the simple use of the reciprocity of the elastic medium instead of the reciprocity of the pore medium will result in the non coincidence of the waveform of the reciprocal matter. In the case of the seismic effect of the pore medium, the source and the couple in the pore medium are obtained by the control square of the coupled wave control of the Pride seismo electric coupling wave. The reciprocity relation between the excited wave field of the pole and the magnetic dipole is used. The Green function method is used to simulate the radiated seismic coupling wave field of the concentrated force and the electric dipole in the infinite homogeneous pore medium and explain the reciprocity relation. It is found that if the percolation displacement term peculiar to the pore medium is ignored in the reciprocity relation, the reciprocal physical wave wave will be caused by the radiation electromagnetic wave. The analytical method is used to simulate the seismic wave field of the surface concentrated force and the electric dipole excited by the electric dipole in the horizontal stratified structure. The reciprocity of the reciprocity is explained by the reflection wave. It shows that the seismic and electrical seismic methods can replace each other in a certain range in the seismic exploration. The dipole, magnetic dipole excitation wave field and the reciprocity physical wave wave form coincide completely. Finally, the reciprocity of the seismic wave field in the fluid porous media stratified structure is given. This work is of great significance for the seismic wave field analysis of seismogram and seismoelectric exploration, which is of great significance for the simulation of the electromagnetic field of the earthquake.

【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P631.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 班書(shū)昊,楊慧珠;小生境遺傳算法在孔隙介質(zhì)反演中的應(yīng)用研究[J];石油勘探與開(kāi)發(fā);2005年02期

2 代智軍;趙社戌;匡震邦;;波在雙孔隙與單孔隙介質(zhì)界面上的反射與透射[J];力學(xué)學(xué)報(bào);2006年03期

3 肖立志;于慧俊;劉化冰;李新;郭葆鑫;ANFEROVA S;ANFEROV V;;新型核磁共振孔隙介質(zhì)分析儀的研制[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期

4 吳望一,陳立蓮;高速滲流的二相驅(qū)替問(wèn)題在溶洞裂縫-孔隙介質(zhì)中的應(yīng)用[J];力學(xué)學(xué)報(bào);1981年06期

5 劉君蘭;孔隙介質(zhì)中磁熱粘彈波的傳播[J];數(shù)學(xué)物理學(xué)報(bào);1984年04期

6 S.V.伊斯巴什;吳家虎;毛昶熙;;大孔隙介質(zhì)中紊流的一些水動(dòng)力學(xué)問(wèn)題[J];水利水運(yùn)科技情報(bào);1973年S3期

7 李向維,李向約;飽水孔隙介質(zhì)的質(zhì)量耦合波動(dòng)問(wèn)題[J];應(yīng)用數(shù)學(xué)和力學(xué);1989年04期

8 白東華,惲杰;氣體在雙重孔隙介質(zhì)中的滲流問(wèn)題[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);1990年01期

9 韓其玉,劉仲一;唐氏孔隙介質(zhì)波動(dòng)理論修正[J];石油地球物理勘探;1995年03期

10 韓其玉,劉仲一;具有封閉孔隙的孔隙介質(zhì)邊界條件[J];石油物探;1995年02期

相關(guān)會(huì)議論文 前10條

1 韓其玉;劉仲一;;具有封閉孔隙的孔隙介質(zhì)界面連續(xù)條件研究[A];1994年中國(guó)地球物理學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];1994年

2 劉仲一;韓其玉;;孔隙介質(zhì)界面封閉孔隙量與聲波反射透射關(guān)系研究[A];1994年中國(guó)地球物理學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];1994年

3 易良坤;席道瑛;張程遠(yuǎn);田象燕;;唯象的孔隙介質(zhì)波動(dòng)理論[A];1999年中國(guó)地球物理學(xué)會(huì)年刊——中國(guó)地球物理學(xué)會(huì)第十五屆年會(huì)論文集[C];1999年

4 關(guān)威;胡恒山;;流體-孔隙介質(zhì)交界面的參數(shù)平均法處理[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

5 韓其玉;牟永光;;孔隙介質(zhì)聲波模型邊界條件[A];1997年中國(guó)地球物理學(xué)會(huì)第十三屆學(xué)術(shù)年會(huì)論文集[C];1997年

6 孫晟;牛濱華;;線彈性各向同性組分孔隙介質(zhì)模型的理論研究[A];中國(guó)地球物理學(xué)會(huì)第22屆年會(huì)論文集[C];2006年

7 成家杰;肖立志;許巍;;利用核磁共振模擬結(jié)果評(píng)價(jià)孔隙介質(zhì)的離散化表征[A];第十七屆全國(guó)波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年

8 余仕成;王克協(xié);;孔隙介質(zhì)地層含氣飽和度對(duì)聲測(cè)井曲線的影響[A];1995年中國(guó)地球物理學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];1995年

9 胡恒山;王治;;孔隙介質(zhì)中斷層位錯(cuò)的等效體力[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年

10 周久光;張玉君;崔志文;呂偉國(guó);王克協(xié);;井外飽和孔隙介質(zhì)中的爆炸點(diǎn)源激發(fā)的聲電場(chǎng)[A];2008年全國(guó)聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年

相關(guān)博士學(xué)位論文 前10條

1 王治;分層彈性與孔隙介質(zhì)中彈性波場(chǎng)的互易關(guān)系[D];哈爾濱工業(yè)大學(xué);2016年

2 黃琨;孔隙介質(zhì)滲流基本方程的探索[D];中國(guó)地質(zhì)大學(xué);2012年

3 孫晟;組分孔隙介質(zhì)模型及其地震波傳播理論研究[D];中國(guó)地質(zhì)大學(xué)(北京);2007年

4 凌云;介觀尺度孔隙介質(zhì)地震波衰減特征與流體識(shí)別[D];吉林大學(xué);2015年

5 鄒冠貴;孔隙介質(zhì)地震波傳播及衰減特征評(píng)價(jià)研究[D];中國(guó)礦業(yè)大學(xué)(北京);2010年

6 楊慶節(jié);雙相孔隙介質(zhì)地震波場(chǎng)模擬及傳播特性分析[D];吉林大學(xué);2015年

7 張生強(qiáng);孔隙介質(zhì)儲(chǔ)層參數(shù)反演與流體識(shí)別方法研究[D];吉林大學(xué);2014年

8 關(guān)威;孔隙介質(zhì)彈性波—電磁場(chǎng)耦合效應(yīng)測(cè)井的波場(chǎng)模擬研究[D];哈爾濱工業(yè)大學(xué);2009年

9 黎水泉;彈脆塑性雙重孔隙介質(zhì)油藏流固耦合數(shù)值模擬[D];清華大學(xué);2000年

10 李學(xué)文;乳狀液在孔隙介質(zhì)中滲流規(guī)律的研究[D];大慶石油學(xué)院;2004年

相關(guān)碩士學(xué)位論文 前10條

1 張泉瀅;飽和孔隙介質(zhì)中震電耦合波傳播規(guī)律研究[D];中國(guó)石油大學(xué)(華東);2014年

2 孫盛彬;均質(zhì)性對(duì)孔隙介質(zhì)內(nèi)CO_2泡沫液滲流特性影響的研究[D];青島科技大學(xué);2016年

3 趙永吉;柱狀雙層孔隙地層中聲電效應(yīng)測(cè)井研究[D];吉林大學(xué);2016年

4 高麗娜;含非均勻飽和孔隙層的層狀介質(zhì)中彈性波反射[D];吉林大學(xué);2016年

5 高晗;黏彈孔隙介質(zhì)波場(chǎng)數(shù)值模擬方法研究[D];吉林大學(xué);2016年

6 段韻達(dá);孔隙介質(zhì)彈性波頻散和衰減的流體湍流效應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2016年

7 趙清華;油層中孔隙介質(zhì)本構(gòu)方程的建立[D];哈爾濱工業(yè)大學(xué);2009年

8 曲文宇;理想孔隙介質(zhì)超聲蠕動(dòng)以及超聲波在其中的傳播[D];哈爾濱工業(yè)大學(xué);2011年

9 易平凡;孔隙介質(zhì)的動(dòng)力響應(yīng)研究[D];上海交通大學(xué);2012年

10 毛迪凡;孔隙介質(zhì)滲流基本方程的改進(jìn)[D];中國(guó)地質(zhì)大學(xué);2012年

,

本文編號(hào):1867750

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1867750.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5b32d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com