天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

堿金屬疊氮化物和疊氮化銀的高壓研究

發(fā)布時(shí)間:2018-05-06 15:27

  本文選題:含能材料 + 疊氮化物 ; 參考:《吉林大學(xué)》2017年博士論文


【摘要】:近年來,疊氮化物作為富氮含能材料家族的重要成員,已經(jīng)成為合成高能量密度材料-聚合氮的理想前驅(qū)體。對(duì)其進(jìn)行高壓研究將為合成高能量密度材料提供新途徑和數(shù)據(jù)支持。本文主要利用X射線衍射、拉曼散射光譜、紅外吸收光譜技術(shù)同時(shí)結(jié)合理論模擬方法,對(duì)疊氮化銣(RbN_3)、疊氮化銫(Cs N_3)、疊氮化鈉(NaN_3)、以及疊氮化銀(AgN_3)進(jìn)行了系統(tǒng)的高壓研究,取得主要成果如下:1.首先,在室溫下利用同步輻射光源對(duì)疊氮化銣進(jìn)行了X射線衍射實(shí)驗(yàn),測(cè)試最高壓力為42.0 GPa。實(shí)驗(yàn)結(jié)果揭示了RbN_3在6.5GPa和16.0 GPa壓力時(shí)發(fā)生了兩次結(jié)構(gòu)相變,相變序列為α-RbN_3→γ-RbN_3→δ-RbN_3。α-RbN_3到γ-RbN_3相變過程中晶胞對(duì)稱性由四重對(duì)稱變?yōu)閮芍貙?duì)稱,并伴有疊氮根的重新排布。經(jīng)分析得γ-RbN_3為具有C2/m空間群的單斜結(jié)構(gòu)。壓力繼續(xù)增加使疊氮根變?yōu)槟芰扛(wěn)定的相互垂直結(jié)構(gòu),晶胞轉(zhuǎn)變?yōu)棣?RbN_3相,δ-RbN_3結(jié)構(gòu)為具有P222/Pmm2/Pmmm空間群的正交結(jié)構(gòu)。α-RbN_3呈現(xiàn)出的各向異性的壓縮率可歸因于疊氮根之間的相互排斥力。計(jì)算得到α-RbN_3體彈模量為18.4GPa,與KN_3和Cs N_3相近似。此外,對(duì)比堿金屬疊氮化物的性質(zhì)和相變壓力點(diǎn)我們發(fā)現(xiàn)他們低壓相變壓力點(diǎn)隨其離子鍵增強(qiáng)而降低。室溫下對(duì)RbN_3進(jìn)行了拉曼散射光譜和紅外吸收光譜的測(cè)試,實(shí)驗(yàn)最高壓力分別為28.5 GPa和30.2 GPa。結(jié)合實(shí)驗(yàn)數(shù)據(jù)與CASTEP計(jì)算結(jié)果我們對(duì)RbN_3所有振動(dòng)模式進(jìn)行了全面系統(tǒng)指認(rèn)。振動(dòng)光譜隨壓力的變化情況揭示了樣品在6.5GPa和16.0 GPa處發(fā)生了兩次結(jié)構(gòu)相變。隨著壓力增加,晶胞發(fā)生了α-RbN_3到γ-RbN_3的位移型相變。中紅外光譜分析揭示了疊氮根在α-RbN_3→γ-RbN_3→δ-RbN_3的相變過程中出現(xiàn)了由相互垂直→相互平行→相互垂直的排布規(guī)律的變化。此外,δ-RbN_3中疊氮根的對(duì)稱伸縮模式出現(xiàn)紅外活性揭示了壓力作用下疊氮根離子的線性對(duì)稱結(jié)構(gòu)被破壞,同時(shí)疊氮根在此相中占據(jù)兩個(gè)非等效位置。2.室溫條件下利用拉曼散射和紅外吸收光譜技術(shù)研究了壓力對(duì)于疊氮化銫(Cs N_3)結(jié)構(gòu)穩(wěn)定性的影響,最高壓力為30.0 GPa。樣品分別在0.5 GPa、3.7 GPa以及16.0 GPa時(shí),出現(xiàn)了II→III→IV→V相的三次相變。T(Eg)振動(dòng)模式的軟化行為揭示了II相到III相過程中晶胞的剪切變形。III相中T(Eg)和R(Eg)振動(dòng)模式的劈裂揭示了疊氮根等效位置的消失。指認(rèn)出IV相為單斜結(jié)構(gòu)且空間群為C2/m。同時(shí)V相的對(duì)稱性要低于其他各相。中紅外光譜中疊氮根彎曲振動(dòng)模式隨壓力的演化以及疊氮根對(duì)稱伸縮振動(dòng)模式表現(xiàn)出紅外活性共同揭示了壓力作用下疊氮根離子的旋轉(zhuǎn)和彎折行為象。并且壓力持續(xù)增加會(huì)使疊氮根彎折的程度加大。彎折的疊氮根離子將更有利于降低疊氮化物的聚合壓力繼而易于形成聚合氮。3.室溫下對(duì)疊氮化鈉(NaN_3)進(jìn)行了高壓拉曼散射光譜和紅外吸收光譜的測(cè)量,實(shí)驗(yàn)最高壓力分別為35.0 GPa和26.0 GPa。首先結(jié)合實(shí)驗(yàn)數(shù)據(jù)和理論計(jì)算結(jié)果對(duì)常壓下所有振動(dòng)模式進(jìn)行了系統(tǒng)全面的指認(rèn)。隨著壓力增加拉曼散射和紅外吸收結(jié)果均一致顯示NaN_3在0.5GPa、14.0GPa以及27.6 GPa發(fā)生了三次結(jié)構(gòu)相變,相變序列為β-NaN_3→α-NaN_3→γ-NaN_3→δ-NaN_3。β-NaN_3到α-NaN_3的相變過程中晶胞出現(xiàn)了剪切形變并伴有疊氮根離子的旋轉(zhuǎn)行為。壓力繼續(xù)增加,內(nèi)模振動(dòng)模式的劈裂揭示了γ-NaN_3結(jié)構(gòu)中疊氮根離子出現(xiàn)了非等效的位置。疊氮根的彎曲振動(dòng)模式出現(xiàn)的異常對(duì)稱式演化過程揭示了壓力下疊氮根離子的旋轉(zhuǎn)行為。此外壓力作用會(huì)使疊氮根繼續(xù)旋轉(zhuǎn)為能量更穩(wěn)定的相互垂直的結(jié)構(gòu)。4.對(duì)疊氮化銀(AgN_3)進(jìn)行了高壓拉曼散射和紅外吸收光譜測(cè)試,測(cè)試所達(dá)到的最高壓力分別為24.0 GPa和13.0 GPa。常壓下疊氮根的彎曲振動(dòng)和反對(duì)稱伸縮振動(dòng)具有拉曼活性說明其具有非線性或者非對(duì)稱結(jié)構(gòu)。壓力增至2.7 GPa時(shí)晶體由正交相結(jié)構(gòu)變成四方相結(jié)構(gòu)。相變后晶體對(duì)稱性升高使得拉曼散射振動(dòng)光譜中多組振動(dòng)模出現(xiàn)了簡(jiǎn)并重組。紅外吸收光譜中v 2(B2u)模式的軟化和v 2(B3u)模式的硬化行為揭示了疊氮根離子在壓力下的旋轉(zhuǎn)行為。此現(xiàn)象揭示了晶體在a軸方向出現(xiàn)負(fù)壓縮性以及正交相到四方相結(jié)構(gòu)相變產(chǎn)生的本質(zhì)原因。此外我們認(rèn)為四方結(jié)構(gòu)中相互垂直排布的疊氮根離子具有較穩(wěn)定的能量,使得此結(jié)構(gòu)能保持至較高壓力。
[Abstract]:In recent years, as an important member of the family of nitrogen rich energetic materials, azide has become an ideal precursor for the synthesis of high energy density materials - polymerized nitrogen. High pressure research on it will provide new ways and data support for the synthesis of high energy density materials. This paper mainly uses X ray diffraction, Raman scattering, and infrared absorption spectroscopy. At the same time, the theoretical simulation method is used to study the high pressure of rubidium azide (RbN_3), caesium azide (Cs N_3), sodium azide (NaN_3) and silver azide (AgN_3). The main achievements are as follows: 1. first, the X ray diffraction experiment on rubidium azide was carried out by using synchrotron radiation light source at room temperature, and the maximum pressure was 42 GPa. real. The experimental results reveal that RbN_3 has two structural phase transitions at 6.5GPa and 16 GPa pressure. The phase transition sequence is that the cell symmetry changes from four symmetry to double symmetry in the phase transition process of alpha -RbN_3 to [-RbN_3] -RbN_3. a -RbN_3 to gamma -RbN_3, and is accompanied by the rearrangement of azide roots. The pressure continues to increase to make the azide root into a more stable vertical structure with a more stable energy. The cell is transformed into a delta -RbN_3 phase, and the delta -RbN_3 structure is an orthogonal structure with the P222/Pmm2/Pmmm space group. The anisotropic compression rate of alpha -RbN_3 is attributable to the mutual repulsion between the azide roots. The modulus of the alpha -RbN_3 body is calculated to be 18.4GPa, It is similar to KN_3 and Cs N_3. In addition, compared with the properties of alkali metal azides and phase transition pressure points, we found that their low-pressure phase transition pressure points were reduced with their ion bond enhancement. At room temperature, the Raman scattering and infrared absorption spectra of RbN_3 were tested at room temperature, the experimental maximum pressure was 28.5 GPa and 30.2 GPa. combined with experimental data, respectively. With the results of CASTEP, all the vibration modes of RbN_3 are systematically identified. The vibration spectra with the pressure change reveal that the sample has two structural phase transitions at 6.5GPa and 16 GPa. With the increase of pressure, the cell occurs the displacement phase change of the alpha -RbN_3 to the gamma -RbN_3. In the phase transformation process of -RbN_3 - gamma -RbN_3 - -RbN_3, there are changes in the law of vertical, parallel and vertical arrangement. In addition, the symmetrical expansion mode of azide roots in Delta -RbN_3 reveals that the linear symmetry structure of azide ions under pressure is destroyed, and the azide roots occupy two of the phase in this phase. The effect of pressure on the structural stability of caesium azide (Cs N_3) was investigated by Raman scattering and infrared absorption spectroscopy at room temperature at a non equivalent position.2.. The softening behavior of the three phase transition.T (Cs) mode of II to III, IV to V appeared at the highest pressure of 30 GPa. samples at 0.5 GPa, 3.7 GPa and 16 GPa, respectively. The splitting of the shear deformation of the cells in the II phase to the III phase, the splitting of the T (Eg) and R (Eg) modes in the.III phase, reveals the disappearance of the equivalent position of the azide root. The symmetry of the IV phase is monoclinic and the space group is C2/m. and the V phase is lower than the other phases. The nitrogen root symmetrically telescopic vibration model shows that the activity of the azide root ion is rotated and flexed under pressure, and the continuous increase of the pressure will increase the degree of bending of azide roots. The bending of azide ions will be more beneficial to reducing the polymerization pressure of azides and then forming the.3. room at room temperature. The High Pressure Raman scattering and infrared absorption spectra of sodium azide (NaN_3) were measured. The maximum pressure of the experiment was 35 GPa and 26 GPa. respectively. First, all the vibration modes under atmospheric pressure were systematically identified with the experimental data and theoretical calculation. The phase transformation of NaN_3 at 0.5GPa, 14.0GPa and 27.6 GPa occurred in three times. The phase transition sequence was the shear deformation and the rotation of azido root ions in the phase transition process of beta -NaN_3, alpha -NaN_3, gamma -NaN_3 and delta -NaN_3. beta -NaN_3 to alpha -NaN_3. The pressure continued to increase, and the splitting of the internal model vibration mode revealed the gamma -NaN_3 structure. The non equivalent position of azido root ions appears. The abnormal symmetry evolution of the bending vibration mode of azide roots reveals the rotation behavior of the azide root ions under pressure. In addition, the pressure action will continue to rotate the azide roots to a more stable and vertical structure.4. for the High Pressure Raman scattering of AgN_3. The maximum pressure of the azide root under 24 GPa and 13 GPa. atmospheric pressure is measured by the fire and infrared absorption spectra, and the bending vibration of azide roots and the anti symmetric expansion vibration have the nonlinear or asymmetric structure. When the pressure increases to 2.7 GPa, the crystal is transformed from the orthogonal phase to the Quartet phase structure. The behavior of multi group vibration modes in the Raman scattering vibration spectrum is degenerate. The softening of the V 2 (B2u) mode and the hardening behavior of the V 2 (B3u) mode in the infrared absorption spectrum reveal the rotation behavior of the azide ion under pressure. This phenomenon reveals the negative compressibility of the crystal in the direction of the a axis and the structure of the quadrature phase to the Quartet phase. The essential reason for the phase transition is that the azide ions, which are vertically arranged in the Quartet structure, have more stable energy, which keeps the structure at high pressure.

【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O521

【相似文獻(xiàn)】

相關(guān)期刊論文 前5條

1 諸平;多疊氮化物引人注目[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2004年03期

2 王乃興;碳-60與疊氮化物反應(yīng)控制探析(英文)[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);1999年02期

3 方樂平,吳華悅;一種簡(jiǎn)便的合成脒的新方法[J];浙江師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年03期

4 王乃興,李紀(jì)生,朱道本;C_60和對(duì)硝基疊氮芐的反應(yīng)研究[J];科學(xué)通報(bào);1994年20期

5 朱麗萍,葉志鎮(zhèn);不同堿金屬疊氮化物對(duì)層狀晶體β-MNCl(M=Zr,Hf)電子摻雜的影響[J];化學(xué)物理學(xué)報(bào);2005年03期

相關(guān)會(huì)議論文 前1條

1 韓波;高艷妮;馬小燕;石先瑩;魏俊發(fā);;1,4,5,8,9,12-六疊氮十二氫苯并[9,10]菲的合成[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第06分會(huì)場(chǎng)摘要集[C];2010年

相關(guān)博士學(xué)位論文 前4條

1 周向同;微生物燃料電池去除疊氮化物和氨氮的特性與機(jī)制[D];哈爾濱工業(yè)大學(xué);2016年

2 李冬梅;堿金屬疊氮化物和疊氮化銀的高壓研究[D];吉林大學(xué);2017年

3 江俊儒;幾種典型有機(jī)疊氮化物的高壓研究[D];吉林大學(xué);2017年

4 武曉鑫;疊氮化銨以及堿土金屬疊氮化物的高壓研究[D];吉林大學(xué);2015年

相關(guān)碩士學(xué)位論文 前1條

1 霍瑞萍;Lewis酸催化有機(jī)腈和疊氮化物合成5-取代四唑機(jī)理的理論研究[D];山西師范大學(xué);2010年



本文編號(hào):1852850

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1852850.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c5a55***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com