幾類(lèi)分?jǐn)?shù)階系統(tǒng)穩(wěn)定性及控制研究
本文選題:分?jǐn)?shù)階微積分 + 變分?jǐn)?shù)階導(dǎo)數(shù) ; 參考:《哈爾濱工業(yè)大學(xué)》2017年博士論文
【摘要】:近年來(lái),由于分?jǐn)?shù)階算子在科學(xué)和工程技術(shù)許多領(lǐng)域中有著廣泛的應(yīng)用,許多研究者開(kāi)始應(yīng)用分?jǐn)?shù)階算子來(lái)解決動(dòng)力學(xué)和控制問(wèn)題。研究課題主要包括分?jǐn)?shù)階微分方程或系統(tǒng)解的存在性和唯一性以及穩(wěn)定性等。這些結(jié)果為控制理論提供了依據(jù)。最近,分?jǐn)?shù)階混沌系統(tǒng)的控制吸引了各個(gè)科學(xué)領(lǐng)域的關(guān)注。對(duì)于分?jǐn)?shù)階控制方法的研究,許多學(xué)者提出了分?jǐn)?shù)階非線(xiàn)性混沌系統(tǒng)的控制方法。在依據(jù)分?jǐn)?shù)階穩(wěn)定性理論來(lái)保證系統(tǒng)穩(wěn)定性時(shí),滑?刂剖且环N非常成熟且完善的控制方法。目前已推廣到了變分?jǐn)?shù)階系統(tǒng)和無(wú)窮維分布參數(shù)系統(tǒng)當(dāng)中。對(duì)研究分?jǐn)?shù)階算子具有一定的理論意義。主要研究?jī)?nèi)容如下:簡(jiǎn)要的論述了分?jǐn)?shù)階微積分的基礎(chǔ)理論和變分?jǐn)?shù)階系統(tǒng)的基本理論,主要包括三種常見(jiàn)的定義、其重要的基本性質(zhì)和常用函數(shù)。也給出了分?jǐn)?shù)階算子的數(shù)值實(shí)現(xiàn)方法。同時(shí),闡述了李雅普諾夫意義下的穩(wěn)定性和分?jǐn)?shù)階滑?刂频牡南嚓P(guān)理論,為以后幾章的內(nèi)容提供了基礎(chǔ)。通過(guò)逼近方法,得到了Banach空間中具有因果算子的分?jǐn)?shù)階微分方程初值問(wèn)題的解的存在性和唯一性,并用實(shí)例驗(yàn)證了研究結(jié)果。此外,采用不動(dòng)點(diǎn)定理,研究了有界和無(wú)界區(qū)間上具因果算子的分?jǐn)?shù)階微分方程的Hyers-Ulam穩(wěn)定性和Hyers-Ulam-Rassias穩(wěn)定性問(wèn)題,并通過(guò)兩個(gè)實(shí)例驗(yàn)證了理論結(jié)果;谧兎?jǐn)?shù)階微分系統(tǒng)初值問(wèn)題轉(zhuǎn)化成的積分形式,采用了Arela-Ascoli定理,給出了系統(tǒng)解存在的條件。在常分?jǐn)?shù)階李雅普諾夫穩(wěn)定性定理的基礎(chǔ)上,通過(guò)常分?jǐn)?shù)階比較定理,提出了變分?jǐn)?shù)階形式的Mittag-Leffer漸近穩(wěn)定性定理,并給出了證明過(guò)程。針對(duì)未受擾變分?jǐn)?shù)階微分系統(tǒng),提出了變分?jǐn)?shù)階積分形式的滑模面,基于此滑模面,給出了相應(yīng)的滑?刂破鞯脑O(shè)計(jì),此控制器能有效的抑制抖振的產(chǎn)生。同時(shí),給出了變分?jǐn)?shù)階導(dǎo)數(shù)形式的滑模面設(shè)計(jì),此滑模面也適合受擾系統(tǒng),并通過(guò)將符號(hào)函數(shù)轉(zhuǎn)化為輸入的變分?jǐn)?shù)階導(dǎo)數(shù)形式,抑制抖振的產(chǎn)生,設(shè)計(jì)出了相應(yīng)的控制器。此外,在具有系統(tǒng)不確定項(xiàng)和外部干擾情況下,設(shè)計(jì)出了自適應(yīng)滑?刂破,并通過(guò)將Barbalat引理推廣到分?jǐn)?shù)階形式,以證明在此控制器下,受控系統(tǒng)的漸近穩(wěn)定性性。最后,給出了數(shù)值仿真,驗(yàn)證了所設(shè)計(jì)控制器的有效性和可行性。針對(duì)在外部干擾和不確定項(xiàng)的情況下,Hilbert空間中的分?jǐn)?shù)階波動(dòng)的控制問(wèn)題。在外部干擾的邊界是未知時(shí),通過(guò)引入自適應(yīng)率,給出了分?jǐn)?shù)階波動(dòng)方程的自適應(yīng)螺旋滑?刂破髟O(shè)計(jì)。在外部干擾的邊界是已知的情況下,給出了分?jǐn)?shù)階滑模面和相應(yīng)的二階超螺旋滑?刂破髟O(shè)計(jì),從而能夠有效的抑制抖振的產(chǎn)生。另外,通過(guò)選擇合適的李雅普諾夫函數(shù),證明了相關(guān)穩(wěn)定性定理;诖硕ɡ,將滑?刂品椒ㄍ茝V到了具有分?jǐn)?shù)階導(dǎo)數(shù)的波動(dòng)方程中,實(shí)現(xiàn)了在這兩種控制器下波動(dòng)方程的漸近穩(wěn)定性。給出了數(shù)值仿真,驗(yàn)證了控制器的可行性和有效性。此外,將滑?刂品椒☉(yīng)用到了分?jǐn)?shù)階波動(dòng)方程的邊界控制問(wèn)題中,設(shè)計(jì)出了邊界控制器。并用分?jǐn)?shù)階全局漸近穩(wěn)定性定理證明了此控制器的有效性,打開(kāi)了滑?刂品ㄔ诰哂蟹?jǐn)?shù)階導(dǎo)數(shù)的分布參數(shù)系統(tǒng)的邊界控制中的應(yīng)用。通過(guò)將計(jì)算非線(xiàn)性系統(tǒng)的廣義頻率響應(yīng)函數(shù)的遞推算法推廣到分?jǐn)?shù)階情形,確定了分?jǐn)?shù)階系統(tǒng)的廣義頻率響應(yīng)函數(shù),根據(jù)廣義頻率響應(yīng)函數(shù),得到了輸出頻率響應(yīng)函數(shù),進(jìn)而表示出了輸出頻譜的表達(dá)式。在正弦輸入下,通過(guò)采用輸出頻率響應(yīng)函數(shù)的概念,建立了在頻域中,與非線(xiàn)性參數(shù)包括非線(xiàn)性阻尼和非線(xiàn)性彈簧以及分?jǐn)?shù)階參數(shù)有關(guān)的系統(tǒng)力的傳遞率解析表達(dá)式。分析了非線(xiàn)性分?jǐn)?shù)階阻尼在不同頻域范圍內(nèi)對(duì)力的傳遞率的影響。最后,通過(guò)數(shù)值仿真,驗(yàn)證了理論部分得到的結(jié)果。
[Abstract]:In recent years, because of the widespread application of fractional operators in many fields of science and engineering technology, many researchers have begun to apply fractional order operators to solve dynamics and control problems. The research topics mainly include the existence, uniqueness and stability of fractional differential equations or system solutions. These results have been proposed for the control theory. Recently, the control of fractional order chaotic systems attracts the attention of all fields of science. For the study of fractional order control methods, many scholars have proposed the control method of fractional order nonlinear chaotic systems. Sliding mode control is a very mature and perfect way to ensure the stability of the system based on the fractional order stability theory. The control method has been extended to the variable fractional order system and the infinite dimensional distribution parameter system. It has some theoretical significance to study the fractional order operator. The main research contents are as follows: the basic theory of fractional calculus and the basic theory of the variable fractional order system are briefly discussed. It mainly includes three common definitions, which are important. The basic properties and common functions. The numerical realization method of fractional order operators is also given. At the same time, the theory of stability and fractional order sliding mode control in Li Yapu's sense is expounded, which provides the basis for the contents of the later chapters. By the approximation method, the fractional differential square with causality operator in Banach space is obtained. In addition, the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of fractional differential equations with causal operators on bounded and unbounded intervals are studied by using the fixed point theorem, and two examples are used to verify the theoretical results. In the integral form of the initial value problem of order differential system, the Arela-Ascoli theorem is adopted and the conditions for the existence of the system are given. On the basis of the constant fractional Lyapunov stability theorem, the Mittag-Leffer asymptotic stability theorem of variable fractional order is put forward by the constant fractional order comparison theorem, and the proof process is given. In the fractional order differential system, the sliding surface of the variable fractional integral form is proposed. Based on the sliding surface, the design of the corresponding sliding mode controller is given. The controller can effectively suppress the production of buffeting. At the same time, the sliding surface design of the variable fractional derivative form is given. The sliding surface is also suitable for the disturbed system, and the symbol is adopted by the symbol. The function is transformed into a variable fractional derivative form of input, and a corresponding controller is designed to suppress the generation of buffeting. In addition, an adaptive sliding mode controller is designed under the system uncertainty and external interference. The Barbalat lemma is generalized to the fractional order form to prove the asymptotic behavior of the controlled system under this controller. Finally, the numerical simulation is given to verify the effectiveness and feasibility of the designed controller. In the case of external interference and uncertainty, the control problem of the fractional wave in the Hilbert space. When the boundary of the external interference is unknown, the adaptive rate is introduced, and the self-adaptive of the fractional wave equation is given. When the boundary of external interference is known, the fractional sliding surface and the corresponding two order super spiral sliding mode controller are designed, which can effectively suppress the production of buffeting. In addition, the relevant stability theorem is proved by selecting the suitable Lyapunov function. Based on this theorem, the sliding mode is made. The control method is extended to the wave equation with fractional derivative, and the asymptotic stability of the wave equation under the two controllers is realized. The numerical simulation is given, and the feasibility and effectiveness of the controller are verified. In addition, the boundary control method is applied to the boundary control problem of the fractional wave equation. The validity of the controller is proved by the fractional order global asymptotic stability theorem. The application of the sliding mode control method to the boundary control of a distributed parameter system with fractional derivative is opened. The fractional order is generalized by the recursive algorithm of the generalized frequency response function of the nonlinear system, and the fractional order is determined. The generalized frequency response function of the system, based on the generalized frequency response function, obtained the output frequency response function, and then expressed the expression of the output spectrum. Under the sine input, by adopting the concept of the output frequency response function, it is established in the frequency domain, and the nonlinear parameters include nonlinear damping, nonlinear spring and fraction. The analytic expression of the transfer rate of the system force related to the order parameters is expressed. The influence of the nonlinear fractional order damping on the transfer rate of the force in the range of different frequency domain is analyzed. Finally, the results of the theoretical part are verified by numerical simulation.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O231
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡建兵;章國(guó)安;趙靈冬;曾金全;;間歇同步分?jǐn)?shù)階統(tǒng)一混沌系統(tǒng)[J];物理學(xué)報(bào);2011年06期
2 周亞非;王中華;;分?jǐn)?shù)階混沌激光器系統(tǒng)的同步[J];半導(dǎo)體光電;2008年05期
3 張若洵;楊世平;;基于反饋線(xiàn)性化的分?jǐn)?shù)階混沌系統(tǒng)的同步[J];河北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
4 左建政;王光義;;一種新的分?jǐn)?shù)階混沌系統(tǒng)研究[J];現(xiàn)代電子技術(shù);2009年10期
5 胡建兵;韓焱;趙靈冬;;分?jǐn)?shù)階系統(tǒng)的一種穩(wěn)定性判定定理及在分?jǐn)?shù)階統(tǒng)一混沌系統(tǒng)同步中的應(yīng)用[J];物理學(xué)報(bào);2009年07期
6 張若洵;楊洋;楊世平;;分?jǐn)?shù)階統(tǒng)一混沌系統(tǒng)的自適應(yīng)同步[J];物理學(xué)報(bào);2009年09期
7 汪紀(jì)鋒;肖河;;分?jǐn)?shù)階全維狀態(tài)觀(guān)測(cè)器設(shè)計(jì)[J];重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
8 曹鶴飛;張若洵;;基于滑?刂频姆?jǐn)?shù)階混沌系統(tǒng)的自適應(yīng)同步[J];物理學(xué)報(bào);2011年05期
9 王茂;孫光輝;魏延嶺;;頻域法在分?jǐn)?shù)階混沌系統(tǒng)計(jì)算中的局限性分析[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2011年05期
10 李志軍;孫克輝;任健;;分?jǐn)?shù)階統(tǒng)一混沌系統(tǒng)的耦合同步研究[J];新疆大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
相關(guān)會(huì)議論文 前10條
1 許勇;王花;劉迪;黃輝;;一類(lèi)參數(shù)擾動(dòng)下的分?jǐn)?shù)階混沌系統(tǒng)的滑?刂芠A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
2 薛定宇;白鷺;;分?jǐn)?shù)階系統(tǒng)的仿真方法(英文)[A];系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)論文集(第15卷)[C];2014年
3 顧葆華;單梁;李軍;王執(zhí)銓;;一種新分?jǐn)?shù)階混沌系統(tǒng)及其復(fù)合快速同步控制[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第七分冊(cè))[南京理工大學(xué)學(xué)報(bào)(增刊)][C];2009年
4 王曉燕;王東風(fēng);韓璞;;一種分?jǐn)?shù)階系統(tǒng)的粒子群優(yōu)化辨識(shí)方法[A];全國(guó)第三屆信號(hào)和智能信息處理與應(yīng)用學(xué)術(shù)交流會(huì)專(zhuān)刊[C];2009年
5 劉杰;董鵬真;尚鋼;;分?jǐn)?shù)階非線(xiàn)性系統(tǒng)動(dòng)力學(xué)分析中數(shù)值算法可靠性及其誘導(dǎo)的復(fù)雜現(xiàn)象[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
6 許建強(qiáng);;參數(shù)不確定分?jǐn)?shù)階統(tǒng)一混沌系統(tǒng)的自適應(yīng)同步[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專(zhuān)業(yè)委員會(huì)C卷[C];2011年
7 劉曉君;洪靈;;分?jǐn)?shù)階Genesio-Tesi系統(tǒng)的混沌及自適應(yīng)同步[A];第十四屆全國(guó)非線(xiàn)性振動(dòng)暨第十一屆全國(guó)非線(xiàn)性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
8 王在華;;分?jǐn)?shù)階系統(tǒng)的實(shí)驗(yàn)建模、穩(wěn)定性分析與數(shù)值求解[A];第六屆全國(guó)動(dòng)力學(xué)與控制青年學(xué)者學(xué)術(shù)研討會(huì)論文摘要集[C];2012年
9 董俊;張廣軍;姚宏;王相波;王玨;;分?jǐn)?shù)階Hindmarsh-Rose神經(jīng)元模型的動(dòng)力學(xué)特性分析[A];第一屆全國(guó)神經(jīng)動(dòng)力學(xué)學(xué)術(shù)會(huì)議程序手冊(cè) & 論文摘要集[C];2012年
10 張若洵;楊世平;鞏敬波;;一個(gè)新Lorenz-like系統(tǒng)的分?jǐn)?shù)階混沌行為及其同步控制[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 蔣靜菲;幾類(lèi)分?jǐn)?shù)階系統(tǒng)穩(wěn)定性及控制研究[D];哈爾濱工業(yè)大學(xué);2017年
2 岳超;分?jǐn)?shù)階可積耦合、離散混沌及代數(shù)幾何解的研究[D];上海大學(xué);2015年
3 梁舒;分?jǐn)?shù)階系統(tǒng)的控制理論研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
4 毛志;分?jǐn)?shù)階擴(kuò)散—波動(dòng)方程和分?jǐn)?shù)階變分問(wèn)題的高精度算法[D];湘潭大學(xué);2015年
5 謝文哲;分?jǐn)?shù)階微分方程邊值問(wèn)題解的研究[D];湖南師范大學(xué);2015年
6 王喬;分?jǐn)?shù)階混沌系統(tǒng)控制與同步理論研究[D];浙江大學(xué);2015年
7 紀(jì)玉德;關(guān)于分?jǐn)?shù)階系統(tǒng)的穩(wěn)定性與反饋控制研究[D];河北師范大學(xué);2016年
8 宋超;幾類(lèi)分?jǐn)?shù)階系統(tǒng)的動(dòng)力學(xué)分析與控制[D];東南大學(xué);2015年
9 趙以閣;幾類(lèi)分?jǐn)?shù)階系統(tǒng)的穩(wěn)定性分析與鎮(zhèn)定控制器設(shè)計(jì)[D];山東大學(xué);2016年
10 李洪利;分?jǐn)?shù)階耦合網(wǎng)絡(luò)的穩(wěn)定性和同步控制[D];新疆大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 白敬;分?jǐn)?shù)階混沌系統(tǒng)的滑?刂芠D];北京交通大學(xué);2012年
2 包學(xué)平;分?jǐn)?shù)階反應(yīng)擴(kuò)散系統(tǒng)中的動(dòng)力學(xué)行為[D];河北師范大學(xué);2015年
3 王偉偉;基于運(yùn)算矩陣的分?jǐn)?shù)階系統(tǒng)辨識(shí)及應(yīng)用[D];燕山大學(xué);2015年
4 吳彩云;一類(lèi)Caputo分?jǐn)?shù)階混沌系統(tǒng)的滑?刂芠D];東北師范大學(xué);2015年
5 葛箏;分?jǐn)?shù)階系統(tǒng)的自適應(yīng)PID控制方法研究[D];沈陽(yáng)理工大學(xué);2015年
6 張順;整數(shù)階與分?jǐn)?shù)階阻尼故障轉(zhuǎn)子系統(tǒng)振動(dòng)特性對(duì)比研究[D];哈爾濱工業(yè)大學(xué);2015年
7 賓虹;分?jǐn)?shù)階混沌系統(tǒng)及同步方法的研究[D];華北電力大學(xué);2015年
8 李丹;熱量傳遞的分?jǐn)?shù)階微分方程模型與數(shù)值模擬[D];華北理工大學(xué);2015年
9 劉浪;分?jǐn)?shù)階系統(tǒng)辨識(shí)與內(nèi)?刂蒲芯縖D];北京化工大學(xué);2015年
10 呂敏;分?jǐn)?shù)階HIV感染模型的動(dòng)態(tài)分析及應(yīng)用[D];廣西民族大學(xué);2015年
,本文編號(hào):1799348
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1799348.html