天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

生物陰極微生物脫鹽燃料電池驅動電容法深度除鹽性能研究

發(fā)布時間:2018-03-21 14:35

  本文選題:微生物脫鹽燃料電池 切入點:生物陰極 出處:《哈爾濱工業(yè)大學》2015年博士論文 論文類型:學位論文


【摘要】:自從1980年之后,全球范圍內的海水淡化裝機容量大幅度上升,海水淡化規(guī)模以每年最高30%的速度在增長。在使用海水淡化增加飲用水的同時,能源的消耗巨大,在最近建設的反滲透海水淡化廠中,能量的消耗大約為3到4 k Wh/m3,能源的短缺及過高的運行成本,限制了其廣泛應用。特別是對于遠離陸地的海島及長期海上作業(yè)的輪船等特殊環(huán)境,由于沒有足夠的電能而無法從海水中獲得淡水。2009年,微生物脫鹽燃料電池(Microbial desalination cell,MDC)的提出使得在不消耗電能的情況下實現(xiàn)海水淡化成為可能。經過5年多的研究,MDC技術雖然在脫鹽效率上有所提高,但是由于MDC陰極中仍使用難以循環(huán)利用的鐵氰化鉀溶液或昂貴的鉑(Pt)做催化劑的空氣陰極,限制了MDC的擴大化、降低了實際應用的可能性。在MDC脫鹽過程中,隨著脫鹽室鹽濃度的降低,其系統(tǒng)的內阻導致脫鹽效率的顯著下降,這方面的特性也使得MDC不適用于低濃度含鹽水,難以將海水脫鹽到可飲用的標準。針對以上問題,本研究在開發(fā)廉價可持續(xù)性催化劑、MDC與其他技術耦合深度脫鹽等方面做了系統(tǒng)性研究。提出了以同步脫鹽、產電為目的的生物陰極MDC;并將生物陰極MDC產生的電能用于驅動膜電容脫鹽技術(Membrane capacitive deionization,MCDI)進行深度脫鹽。為MDC低成本應用于海水除鹽獲得淡水方面提供新思路。開發(fā)了以微生物作為陰極催化劑的空氣陰極MDC。與不添加微生物作為催化劑的曝氣陰極相比,MDC陰極電極表面生長的生物膜能夠降低陰極的內阻、提高MDC的輸出電壓和輸出功率,從而提高了MDC的脫鹽速率。運行穩(wěn)定后在1000Ω外電阻條件下的最高電壓可達570 m V,對于初始濃度為35 g/L的模擬海水,經過480 h的運行后,鹽濃度最低可以降到1 g/L以下,去除率可達90%以上。但隨著鹽水濃度的降低,脫鹽速率大幅度下降,對于1 g/L以下的鹽溶液,脫鹽速率只有35 g/L時的16%。MDC脫鹽室內鹽溶液濃度的降低會導致電池內阻的急劇上升,其脫鹽速率也大幅度降低。當鹽水濃度為1 g/L時,運行48 h后,內阻由217Ω上升為793Ω。為了實現(xiàn)能量自給的深度脫鹽,提出用MDC驅動MCDI深度脫鹽的連用技術。當處理1 g/L的低濃度含鹽水時,MCDI的處理效果要遠高于傳統(tǒng)的電容脫鹽技術(CDI)的處理效果。與0.8 V的直流穩(wěn)壓電源相比,以MDC作為MCDI供電可使MCDI具有更高的電吸附容量,當兩個MDC并聯(lián)為MCDI供電時,MCDI的吸附容量為直流穩(wěn)壓電源供電的1.6倍。MDC與MCDI系統(tǒng)耦合后不僅實現(xiàn)對MCDI脫鹽的連續(xù)運行,并且MDC自身在供電的同時,相比于固定外阻200Ω的條件下,脫鹽室的電導率下降速度提高了36.2%。經過MDC與MCDI聯(lián)用處理18個周期后,處理水可以達到飲用標準。經過5500h的運行,生物陰極MDC的功率密度、庫倫效率及脫鹽速率分別下降71%,44%和27%,主要是由于陰離子交換膜和陽離子交換膜上的生物沉積造成的。膜污染不僅會引起膜通透性的下降,還會升高電池的內阻。對系統(tǒng)內微生物相的分析表明,MDC陽極微生物多樣性要低于報道的MFC陽極微生物組成。在MDC中Proteobacteria的含量要高于MFC陽極中大約30%。在MDC系統(tǒng)中,陰極生物膜中的Planctomycetes含量要遠高于陽離子交換膜(CEM),表明生物陰極的好氧反應有助于Planctomycetes累積。經過長期運行后,發(fā)現(xiàn)脫鹽室內會出現(xiàn)微生物污染。脫鹽室內微生物污染的主要原因是陽極內的有機物成分通過AEM進入到脫鹽室內污染了脫鹽水。為解決該問題,設計了帶緩沖室的四室MDC,分別增加了質子交換膜(PMDC)和增設陽離子交換膜(CMDC)。與三室MDC相比,PMDC和CMDC在外電阻1000Ω情況下兩端電壓分別下降33.8%和37.4%。對于初始濃度為35 g/L的鹽溶液,在前240 h內,PMDC的脫鹽性能優(yōu)于三室MDC。并且PMDC能夠有效地防止乙酸根和磷酸根進入到鹽水中,PMDC中乙酸根和總磷的轉移量分別為105.7±26.3 mg/L和28.8±9.8 mg/L,只是MDC中的15.8%和35.6%。采用生物陰極MDC和膜電容脫鹽法技術,能夠將模擬海水(Na Cl濃度35 g/L)的含鹽量降到飲用水標準(氯化物250 mg/L)。但由于其中有機物的滲透問題,仍需要對脫鹽后的水進行后續(xù)處理。雖然有諸多問題,但MDC-MCDI技術使得遠離陸地的海島及遠航船只在不消耗電能的情況下獲得淡水成為可能。
[Abstract]:Since 1980, global desalination capacity increased substantially, desalination scale to the highest annual growth at a rate of 30%. In the use of desalination increased drinking water at the same time, the energy consumption is huge, in the recent construction of reverse osmosis desalination plant, energy consumption is about 3 to 4 K Wh/m3, the energy shortage and high operating cost, limits its wide application. Especially for away from the land of the island and maritime operations ships and other special circumstances, because there is not enough power to get fresh water from seawater desalination.2009, microbial fuel cell (Microbial desalination, cell, MDC) makes in the consumption of electrical energy to achieve desalination possible. After 5 years of study, although the MDC technology improves the efficiency of desalination, but because MDC is still difficult to follow the use of cathode Using potassium ferricyanide solution or expensive platinum ring (Pt) air cathode catalyst, limiting the MDC expansion, to reduce the possibility of practical application. In the MDC desalination process, with the decrease of desalination chamber salt concentration, resistance of the system resulting in a significant decrease in the efficiency of desalination, this characteristic also makes MDC is not suitable for the low concentration of salt water, to the desalination of seawater to drinking standards. To solve the above problems, the research on sustainable development of cheap catalyst, made a systematic study of MDC and other technical aspects. The coupling depth desalting is proposed to synchronize the desalination, producing electricity for biocathode MDC purposes; and biocathode MDC generated electricity is used to drive the membrane capacitance (Membrane capacitive deionization, desalination technology MCDI) depth desalting. MDC low cost used in seawater desalination provides a new way to obtain fresh water. Developed with The air microorganism as cathode MDC. cathode catalyst with no microbial aeration as compared to cathode catalyst, MDC biofilm growth on the surface of the cathode electrode can decrease the cathode resistance, improve MDC output voltage and output power, thereby improving the MDC desalination rate. After the stable operation of the highest voltage up to 1000 ohm resistance in external conditions 570 m V, the initial concentration of simulated seawater 35 g/L, 480 h after the operation, the lowest salt concentration can be reduced to below 1 g/L, the removal rate can reach more than 90%. But with lower salt concentration, the desalting rate decreased to below 1 g/L, salt solution, reduce the concentration of indoor 16%.MDC desalination of salt the solution is only 35 g/L when the desalination rate will lead to a sharp rise in the internal resistance of the battery, the desalting rate is also greatly reduced. When the salt concentration was 1 g/L, 48 h after operation, the internal resistance increased to 79 from 217. 3. In order to achieve energy self-sufficiency in desalting, put forward to drive the MCDI MDC for desalting technology. When treated with 1 g/L of low concentration of saline water, the treatment efficiency of MCDI is much higher than the traditional capacitive desalination technology (CDI) treatment effect. Compared with the DC power supply of 0.8 V, with MDC as the MCDI power supply can make the MCDI has a higher adsorption capacity, when the two MDC parallel MCDI power supply, the adsorption capacity of MCDI for the DC power supply 1.6 times.MDC and MCDI coupling system not only realize continuous operation of MCDI desalination, and MDC itself in the power supply at the same time, compared to the fixed external resistance 200 Omega conditions, conductivity decreased desalination chamber rate increased 36.2%. after MDC combined with MCDI treatment after 18 cycles of treatment can reach the standard of drinking water. After the operation of 5500h, power density of biocathode MDC, and the desalting rate efficiency of Kulun Don't drop 71%, 44% and 27%, mainly due to biological deposition of anion and cation membrane. The membrane pollution can not only cause the decline of membrane permeability, the internal resistance of battery is also increased. According to the analysis of the system of microorganisms, microbial diversity is lower than that of MDC anode anode microbial composition. MFC reports the content of Proteobacteria in MDC was higher than that of MFC anode is about 30%. in the MDC system, the content of Planctomycetes cathode in the biofilm is much higher than the cation exchange membrane (CEM), showed that the aerobic reaction biocathode contributes to the accumulation of Planctomycetes. After a long run, found that indoor microbial contamination. Desalination will appear the main reason of microorganisms indoor pollution is desalination of organic compounds in the anode through the AEM into the desalted water desalination indoor pollution. In order to solve this problem, designed with a buffer chamber and four MDC, Increase of the proton exchange membrane (PMDC) and a cation exchange membrane (CMDC). Compared with three MDC, PMDC and CMDC in the voltage across the 1000 resistor under salt solution were decreased 33.8% and 37.4%. for the initial concentration of 35 g/L, within the first 240 h, PMDC 3 and MDC. is better than the desalination performance PMDC can effectively prevent the acetic acid and phosphate into salt water, transfer amount of acetate and total phosphorus in PMDC is 105.7 + 26.3 + 9.8 mg/L and 28.8 mg/L respectively, only 15.8% in MDC and 35.6%. using the technology of bio cathode MDC and membrane capacitance desalination, can be simulated seawater (Na concentration of 35 Cl g/L) the salt content is reduced to the standard of drinking water (250 mg/L chloride). But because the permeability of organic matter, still need follow-up treatment of desalinated water. Although there are many problems, but the MDC-MCDI technology makes the island far away from land and ships in It is possible to get fresh water without consumption of electricity.

【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:P747

【參考文獻】

相關期刊論文 前4條

1 吳麗;陳曉;張秀云;于芳;;同步廢水處理及產電的微生物燃料電池研究進展[J];廣州化工;2012年23期

2 姚森;何雅玲;謝濤;席奐;;微生物碳捕獲電池陰極室CO_2捕獲速率的計算[J];工程熱物理學報;2012年12期

3 馮玉杰;王鑫;李賀;楊俏;曲有鵬;史昕欣;劉佳;何偉華;解明利;;基于微生物燃料電池技術的多元生物質生物產電研究進展[J];環(huán)境科學;2010年10期

4 李琦;;海水淡化—沿海城市水資源可持續(xù)發(fā)展的重要策略[J];科學管理研究;2010年01期

相關博士學位論文 前1條

1 程浩毅;生物電化學系統(tǒng)定向還原硝基苯及能量循環(huán)補償模式研究[D];哈爾濱工業(yè)大學;2013年

,

本文編號:1644280

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1644280.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶5fb4b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
欧美日韩无卡一区二区| 欧美一区二区三区五月婷婷| 视频一区二区 国产精品| 日韩三极片在线免费播放| 日韩人妻av中文字幕| 国产成人精品一区二区三区| 亚洲中文字幕剧情在线播放| 日本黄色录像韩国黄色录像| 国产一区欧美一区日本道| 中文字幕日韩欧美亚洲午夜 | 少妇熟女精品一区二区三区| 亚洲午夜精品视频在线| 国产国产精品精品在线| 欧美精品日韩精品一区| 免费啪视频免费欧美亚洲 | 欧美大胆美女a级视频| 久久精品国产亚洲av麻豆| 扒开腿狂躁女人爽出白浆av | 99久久精品午夜一区| 很黄很污在线免费观看| 亚洲熟女国产熟女二区三区| 国产精品久久香蕉国产线| 欧美国产日本免费不卡| 日本成人三级在线播放| 欧美国产极品一区二区| 亚洲欧美中文日韩综合| 欧美综合色婷婷欧美激情| 亚洲伦理中文字幕在线观看| 深夜日本福利在线观看| 亚洲欧美日韩中文字幕二欧美| 国产一级特黄在线观看| 九九热这里只有免费精品| 中文字幕一二区在线观看| 欧美精品亚洲精品日韩专区| 中文字幕亚洲视频一区二区| 丰满熟女少妇一区二区三区| 午夜视频成人在线免费| 欧美国产日本高清在线| 国产三级视频不卡在线观看| 久久国产精品亚州精品毛片| 老富婆找帅哥按摩抠逼视频|