工程巖體漸進(jìn)破壞的廣義粒子動(dòng)力學(xué)數(shù)值模擬
本文選題:配點(diǎn)無網(wǎng)格法 切入點(diǎn):GPD法 出處:《重慶大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:復(fù)雜受力條件下各類大型巖體工程的穩(wěn)定性歷來備受關(guān)注,無網(wǎng)格法作為數(shù)值分析的一大類方法,在描述工程結(jié)構(gòu)體漸進(jìn)破壞,模擬巖石材料的裂紋擴(kuò)展方面具有優(yōu)勢,可用于判斷工程的穩(wěn)定性,是目前巖土工程數(shù)值分析方法領(lǐng)域的一個(gè)研究熱點(diǎn)。本文基于學(xué)者對無網(wǎng)格算法的已有研究,提出應(yīng)用于巖石工程領(lǐng)域的廣義粒子動(dòng)力學(xué)法(General Particle Dynamics,GPD法)。研究工作主要有以下幾個(gè)方面:①提出適用于巖石類材料漸進(jìn)破壞模擬的無網(wǎng)格GPD法。方法基于連續(xù)介質(zhì)守恒方程,用威布爾統(tǒng)計(jì)學(xué)方法描述巖石不均質(zhì)特點(diǎn),采用巖石本構(gòu)方程和巖石力學(xué)的參數(shù),沿用無網(wǎng)格配點(diǎn)法中光滑粒子流體動(dòng)力學(xué)(Smoothed Particle Hydrodynamics,SPH)方法的離散思想,引入巖石屈服準(zhǔn)則等,使得GPD法能較好的模擬彈脆性巖石材料的裂紋擴(kuò)展。②無網(wǎng)格GPD法作為動(dòng)態(tài)數(shù)值模擬方法,用于準(zhǔn)靜態(tài)力學(xué)模型;趲r石單軸壓縮GPD模型,模擬二維和三維巖樣中裂紋的擴(kuò)展,同時(shí)考察巖樣模型的應(yīng)力場、應(yīng)變場、破壞模式等,模擬結(jié)果與單軸壓縮實(shí)驗(yàn)結(jié)論進(jìn)行對比,考察GPD程序在準(zhǔn)靜態(tài)試驗(yàn)中的可靠性。③無網(wǎng)格GPD法用于簡單邊坡漸進(jìn)破壞數(shù)值模擬。將強(qiáng)度折減法(Shear strength reduction method,SRM)融入GPD法,通過臨界強(qiáng)度折減系數(shù)(Shear strength reduction factor,SRF)定義了配點(diǎn)型無網(wǎng)格算法中邊坡的安全系數(shù),用于評價(jià)巖質(zhì)邊坡的穩(wěn)定性。④無網(wǎng)格GPD法用于混凝土抗滑樁加強(qiáng)型簡單邊坡漸進(jìn)破壞的數(shù)值模擬。將抗滑樁加固邊坡看做抗滑樁和巖質(zhì)邊坡兩種材料耦合作用的模型,在GPD法中融入耦合邊界條件和邊界粒子作用方式,在無網(wǎng)格法自適應(yīng)的特點(diǎn)下,可實(shí)現(xiàn)對抗滑樁加固巖質(zhì)邊坡穩(wěn)定性的評價(jià)。⑤彈塑性GPD法的建立。將考慮剪脹性的彈塑性理論引入GPD法,同時(shí)將隧道模型簡化為彈塑性圓形隧道模型,采用GPD法從塑性角度評估、描述圍巖穩(wěn)定性。⑥建立考慮動(dòng)態(tài)特征的GPD法,并應(yīng)用于巖爆模型。將適用巖石“高地應(yīng)力+動(dòng)態(tài)擾動(dòng)”力學(xué)狀態(tài)的含率效應(yīng)的HJC強(qiáng)度模型引入GPD法,用于判斷隧洞中巖石GPD粒子屈服,在含不同預(yù)置裂紋的圓形隧道模型中,實(shí)現(xiàn)GPD法對深部圍巖巖爆的模擬。⑦以錦屏二級水電站隧道為研究背景,采用理論分析、GPD數(shù)值模擬方法對引水隧洞、輔助隧洞的穩(wěn)定性進(jìn)行了研究。通過GPD法對錦屏二級水電站隧道的力學(xué)場量、圍巖漸進(jìn)破壞、圍巖坍塌等進(jìn)行精細(xì)模擬,嘗試GPD法用于預(yù)測工程巖爆發(fā)生的位置和強(qiáng)度。
[Abstract]:The stability of large rock mass engineering under complex stress conditions has always been concerned. As a large class of numerical analysis methods, meshless method has advantages in describing progressive failure of engineering structures and simulating crack growth of rock materials. It is a hot research topic in the field of numerical analysis of geotechnical engineering, which can be used to judge the stability of engineering. In this paper, a generalized particle dynamics method for rock engineering is presented. There are several aspects in the research work: 1. A meshless GPD method for progressive failure simulation of rock materials is proposed. The method is based on the conservation equation of continuum medium. The characteristics of rock heterogeneity are described by Weibull statistical method. The constitutive equation of rock and the parameters of rock mechanics are used. The discrete idea of smooth particle hydrodynamics (Smoothed Particle hydrodynamics) method and rock yield criterion are adopted in the meshless collocation method. The GPD method can be used to simulate the crack propagation of elastic-brittle rock materials. 2. The meshless GPD method is used as a dynamic numerical simulation method for quasi static mechanical model. Based on the uniaxial compression GPD model of rock, the crack propagation in two and three dimensional rock samples is simulated. At the same time, the stress field, strain field and failure mode of rock sample model are investigated. The simulation results are compared with the results of uniaxial compression experiment. The reliability of GPD code in quasi static test was investigated. 3 meshless GPD method was applied to numerical simulation of simple slope progressive failure. The strength reduction method Shear strength reduction method SRM was incorporated into GPD method. The safety factor of slope in the meshless collocation algorithm is defined by the critical strength reduction coefficient (Shear strength reduction factor-SRF). In order to evaluate the stability of rock slope, the method of .4 meshless GPD is used to simulate the progressive failure of reinforced simple slope with concrete anti-slide pile. The reinforcement of slope with anti-slide pile is regarded as a coupling model of two kinds of materials, that is, anti-slide pile and rock slope. The coupled boundary condition and boundary particle interaction mode are incorporated in the GPD method, and the meshless method is adaptive. It can be realized to evaluate the stability of rock slope strengthened by anti-slide pile. The elastoplastic theory considering shear dilatancy is introduced into GPD method, and the tunnel model is simplified as an elastic-plastic circular tunnel model. The GPD method is used to evaluate the stability of surrounding rock from the plastic point of view. The GPD method considering the dynamic characteristics is established and applied to the rock burst model. The HJC strength model suitable for the mechanical state of "dynamic disturbance of high in-situ stress" is introduced into the GPD method. In order to judge the yield of rock GPD particles in tunnel, in the circular tunnel model with different preset cracks, the simulation of rock burst in deep surrounding rock by GPD method is realized. In this paper, the stability of diversion tunnel and auxiliary tunnel is studied by means of theoretical analysis and GPD numerical simulation method. The mechanical field, progressive failure of surrounding rock and collapse of surrounding rock are simulated by GPD method. This paper attempts to use GPD method to predict the location and strength of engineering rockburst.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TU45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王宇;曹強(qiáng);李曉;劉帥;余宏明;;邊坡漸進(jìn)破壞的模糊隨機(jī)可靠性研究[J];工程地質(zhì)學(xué)報(bào);2011年06期
2 鄭利濤;胡志強(qiáng);唐洪祥;;強(qiáng)間斷分析方法在土工結(jié)構(gòu)物漸進(jìn)破壞過程中的應(yīng)用[J];巖土力學(xué);2012年09期
3 劉泉聲;胡云華;劉濱;;基于試驗(yàn)的花崗巖漸進(jìn)破壞本構(gòu)模型研究[J];巖土力學(xué);2009年02期
4 凌道盛;涂福彬;卜令方;;基于黏聚區(qū)域模型的邊坡漸進(jìn)破壞過程強(qiáng)化有限元分析[J];巖土工程學(xué)報(bào);2012年08期
5 殷有泉;巖體介質(zhì)漸進(jìn)破壞的彈塑性本構(gòu)關(guān)系[J];固體力學(xué)學(xué)報(bào);1981年01期
6 艾南山 ,苗天德;山體穩(wěn)定性的一種新判據(jù)——以東鄉(xiāng)石拉泉山為例[J];蘭州大學(xué)學(xué)報(bào);1986年01期
7 謝志民,苗常青,杜星文;受軸向撞擊復(fù)合材料管的漸進(jìn)破壞[J];應(yīng)用力學(xué)學(xué)報(bào);2000年01期
8 李世海;周東;;地質(zhì)體漸進(jìn)破壞面的計(jì)算模型與剪切面破壞準(zhǔn)則[J];巖石力學(xué)與工程學(xué)報(bào);2013年S2期
9 唐洪祥;李錫夔;;土工結(jié)構(gòu)物漸進(jìn)破壞過程Cosserat連續(xù)體有限元分析[J];大連理工大學(xué)學(xué)報(bào);2010年03期
10 張宏,殷有泉;巖體漸進(jìn)破壞有限元分析及NOLM程序[J];固體力學(xué)學(xué)報(bào);1983年02期
相關(guān)會議論文 前5條
1 劉信聲;李朝弟;劉小琴;;巖土類結(jié)構(gòu)的漸進(jìn)破壞特性[A];第二屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(下)[C];1993年
2 彭守拙;梁毅;;花崗巖的漸進(jìn)破壞和數(shù)值模擬[A];第三屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(下)[C];1994年
3 楊慶;欒茂田;焦建奎;;邊坡漸進(jìn)破壞可靠性分析及其應(yīng)用[A];中國土木工程學(xué)會第八屆土力學(xué)及巖土工程學(xué)術(shù)會議論文集[C];1999年
4 陳國周;賈金青;;錨桿與土體界面漸進(jìn)破壞的解析解[A];第九屆全國巖土力學(xué)數(shù)值分析與解析方法討論會論文集[C];2007年
5 張玉武;廖國華;;邊坡的一種漸進(jìn)破壞[A];邊坡穩(wěn)定的巖石力學(xué)分析學(xué)術(shù)會議論文集(上集)[C];1987年
相關(guān)博士學(xué)位論文 前2條
1 趙毅;工程巖體漸進(jìn)破壞的廣義粒子動(dòng)力學(xué)數(shù)值模擬[D];重慶大學(xué);2015年
2 郭運(yùn)華;巖石破裂過程的統(tǒng)計(jì)損傷模型及裂隙巖體漸進(jìn)破壞數(shù)值模擬[D];山東大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 吳曉明;均質(zhì)土坡漸進(jìn)破壞可靠性分析[D];浙江大學(xué);2006年
2 王永剛;雙層反翹滑坡漸進(jìn)破壞力學(xué)模型及時(shí)效變形分析[D];中國科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年
3 王宇;滑坡漸進(jìn)破壞模糊隨機(jī)可靠性研究[D];中國地質(zhì)大學(xué);2012年
4 鄭娟;土質(zhì)邊坡漸進(jìn)破壞計(jì)算機(jī)仿真及模型試驗(yàn)研究[D];華東交通大學(xué);2009年
5 馮香;土性參數(shù)空間變異性與邊坡漸進(jìn)破壞可靠性分析研究[D];浙江大學(xué);2015年
6 韋會強(qiáng);擋土墻土體漸進(jìn)破壞試驗(yàn)研究與數(shù)值模擬[D];同濟(jì)大學(xué);2007年
,本文編號:1594797
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1594797.html