物傘流固耦合及多體系統(tǒng)動力學(xué)研究
發(fā)布時間:2018-03-10 09:27
本文選題:降落傘 切入點:充氣過程 出處:《國防科學(xué)技術(shù)大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:物傘系統(tǒng)是降落傘減速回收技術(shù)中的主要研究對象,隨著航空航天技術(shù)的高速發(fā)展,各類新型的減速任務(wù)對物傘系統(tǒng)的功能性和適用性提出了更高的要求。典型的物傘系統(tǒng)工作過程需要經(jīng)歷自由飛行、拉直、充氣、穩(wěn)定下落和著陸等多個階段,其中充氣過程最為復(fù)雜,是典型的非線性流固耦合問題。除此之外,物傘多體系統(tǒng)飛行過程的動力學(xué)特性也會受到降落傘氣動力和結(jié)構(gòu)變形的顯著影響。因此從多學(xué)科耦合的角度開展物傘系統(tǒng)動力學(xué)仿真和試驗研究是深入了解降落傘工作過程的關(guān)鍵。本文對物傘系統(tǒng)工作過程的流固耦合問題和多體系統(tǒng)動力學(xué)問題進(jìn)行了數(shù)值仿真和試驗研究,取得了相應(yīng)的研究成果。(1)研究了基于任意拉格朗日-歐拉(Arbitrary Lagrangian Eulerian,ALE)方法的流固耦合技術(shù)。闡述了復(fù)雜降落傘結(jié)構(gòu)特點并給出了用于降落傘充氣仿真的初始折疊模型參數(shù)化建模技術(shù),建立了降落傘柔性織物結(jié)構(gòu)和周圍低速不可壓縮流場的控制方程,基于ALE描述對控制方程進(jìn)行離散,引入網(wǎng)格平滑技術(shù)控制傘衣結(jié)構(gòu)單元變形過大的問題,采用基于接觸碰撞技術(shù)的罰函數(shù)耦合方法對降落傘結(jié)構(gòu)節(jié)點和流體單元進(jìn)行約束,實現(xiàn)了降落傘充氣過程的流固耦合計算。(2)針對低速空投任務(wù)中的降落傘有限質(zhì)量充氣問題進(jìn)行了數(shù)值仿真研究。應(yīng)用ALE流固耦合技術(shù),引入了ALE動網(wǎng)格運動策略,建立了復(fù)雜開縫救生傘的有限元模型,數(shù)值模擬充氣下落過程傘衣外形變化,對比試驗結(jié)果分析降落傘充氣性能,研究傘衣周圍流場衍變機理和流固耦合特性,得到傘衣織物結(jié)構(gòu)動力學(xué)響應(yīng)規(guī)律,仿真結(jié)果為降落傘設(shè)計和傘型開發(fā)提供理論依據(jù)和數(shù)據(jù)支撐,具有較強的工程應(yīng)用性。(3)結(jié)合風(fēng)洞試驗數(shù)據(jù),研究了火星降落傘超聲速充氣過程動力學(xué)特性;跁r空守恒元解元(Conservation Element and Solution Element,CE/SE)方法和結(jié)構(gòu)力學(xué)求解方法(Mechanical Solver)建立了流固耦合平臺,采用較為成熟的火星科學(xué)試驗計劃(Mars Science Laboratory,MSL)的盤縫帶傘-探測器全尺寸模型和縮比尺寸模型,在流固耦合平臺下進(jìn)行無限質(zhì)量充氣過程的仿真計算,對應(yīng)風(fēng)洞試驗工況下的盤縫帶傘充氣性能,將仿真結(jié)果與NASA試驗數(shù)據(jù)進(jìn)行對比驗證,得到了盤縫帶傘傘衣外形變化規(guī)律和充氣性能參數(shù),分析了火星降落傘的減速阻力特性,結(jié)合試驗圖像研究了前置體對傘衣周圍流場特性和激波分布的影響,仿真結(jié)果驗證了耦合平臺對超聲速降落傘流固耦合問題的適用性。(4)基于物傘系統(tǒng)多體動力學(xué)理論預(yù)測了開傘過載對乘員的損傷概率。建立了空投任務(wù)中救生傘和乘員載荷的動力學(xué)模型。應(yīng)用有限質(zhì)量充氣的ALE流固耦合方法仿真了不同開傘工況下的開傘過載和吊帶張力曲線,背帶約束系統(tǒng)和軀干假人模型,對不同高度速度條件下救生傘的開傘動載及乘員損傷概率進(jìn)行仿真評估,分析救生傘開傘沖擊對人體的影響,總結(jié)了人體損傷指標(biāo),對身體各部位開傘過載沖擊作用下的耐受限值進(jìn)行評估。(5)研究了火星探測任務(wù)中物傘多體系統(tǒng)的動力學(xué)相似性準(zhǔn)則和縮比試驗。首先確定相關(guān)無量綱參數(shù),推導(dǎo)動力學(xué)相似定律,確定地球和火星飛行試驗系統(tǒng)的相似性縮放比例并指導(dǎo)地面試驗設(shè)計,利用飛艇空投平臺開展物傘系統(tǒng)縮比試驗,獲取降落傘和系統(tǒng)彈道參數(shù),結(jié)合降落傘穩(wěn)定下落過程動力學(xué)模型和小擾動理論對物傘系統(tǒng)進(jìn)行飛行力學(xué)仿真和穩(wěn)定性分析,對比結(jié)果驗證了物傘縮比試驗系統(tǒng)的適用性和動力學(xué)模型的有效性。(6)對火星探測的進(jìn)入、減速和著陸(Entry,Descet and Landing,EDL)全過程的飛行彈道進(jìn)行了集成仿真。分別建立了盤縫帶傘-著陸器系統(tǒng)的進(jìn)入段、拉直、充氣和減速著陸段的動力學(xué)模型,基于自適應(yīng)開傘控制方法獲取開傘點參數(shù),并對進(jìn)入和減速過程的全彈道進(jìn)行關(guān)聯(lián)性研究和仿真。最后基于面向?qū)ο笤O(shè)計語言,集成各階段動力學(xué)模塊,建立多學(xué)科集成仿真框架,對降落傘和著陸器的EDL全過程彈道和開傘過程動力學(xué)進(jìn)行三維視景顯示,便于系統(tǒng)優(yōu)化設(shè)計。本文圍繞物傘系統(tǒng)減速工作過程的相關(guān)耦合動力學(xué)問題,研究了物傘系統(tǒng)的流固耦合方法、多體動力學(xué)方法和多學(xué)科集成仿真技術(shù),并應(yīng)用于降落傘空投救生、火星EDL過程的物傘動力學(xué)分析和試驗設(shè)計中。論文對于發(fā)展航空航天領(lǐng)域的降落傘回收技術(shù)具有重要意義和工程價值。
[Abstract]:Parachute system is the main research object of parachute deceleration recovery technology, with the rapid development of aerospace technology, put forward higher requirements of various kinds of new functional tasks of deceleration parachute systems and applicability. The working process of the typical parachute systems need to experience the free flight, straightened, inflatable, multiple stages of stability whereabouts and landing, the inflation process is the most complex, is a typical nonlinear fluid solid coupling problem. In addition, the dynamic characteristics of parachute payload multi-body system during flight will be parachute aerodynamic and structural deformation of the significant effect. So the simulation and test research of parachute system dynamics development from multi subject coupling the key is to understand the perspective of parachute working process. The research of numerical simulation and experiment this paper parachute system process problem of fluid solid coupling and multi body system dynamics, Some results have been achieved. (1) studied based on arbitrary Lagrange Euler (Arbitrary Lagrangian, Eulerian, ALE) method of fluid solid coupling technology. Describes the characteristics of the complex structure of the parachute are given and used for the initial parameters of the simulation model of folded parachute modeling technology, established the control equation of flexible fabric structure and parachute around the low speed incompressible flow, ALE describes the control equation is discretized based on the grid smoothing control canopy structure unit of large deformation problem using penalty function coupling method of contact collision technology based on the structure of node and unit parachute fluid solid coupling constraints, the parachute inflation process flow (calculated. 2) for low velocity airdrop missions in the parachute inflation problem of finite mass numerical simulation was carried out. The application of ALE coupling technique, introduced ALE The mesh movement strategy, established the finite element model of the complex slotted lifesaving umbrella, numerical simulation of canopy shape change inflation falling process, analysis and comparison of the test results of the parachute inflation performance, the flow field around the evolvement mechanism and fluid solid coupling characteristics, obtained canopy fabric structural dynamic response, the simulation results provide a theoretical basis and data support for the parachute design and the umbrella type development, with more strong engineering application. (3) combined with wind tunnel test data, the dynamic characteristics of the supersonic Mars parachute inflation process. Space time conservation element solution (Conservation Element and Solution based on Element, CE/SE) method and structural mechanics method (Mechanical Solver) was established by using fluid solid coupling platform. The test plan of the Mars Science mature (Mars Science Laboratory, MSL) of the disk gap band parachute full size detector model and shrinkage ratio Inch model simulating infinite mass charging process in FSI platform, wind tunnel test conditions corresponding to the disk gap band parachute inflation performance, simulation results and test data of NASA are validated by disk gap band parachute canopy shape variation and aeration parameters, analyzed the deceleration resistance characteristics of Mars the parachute, on the front body effect on canopy flow characteristics around and shock distribution with the test images, the simulation results verify the applicability of the platform coupled fluid solid coupling problem of supersonic parachute. (4) parachute system multi-body dynamics theory to predict the parachute overload damage probability of the occupant. Based on the established dynamics in the rescue parachute airdrop task model and passenger load. The application of limited quality inflatable ALE fluid solid coupling method is simulated in different conditions of the parachute parachute overload and sling tension curve, back Belt restraint system and trunk dummy model, open the umbrella of different height velocity lifesaving umbrella dynamic load and occupant injury probability simulation assessment, analysis of lifesaving parachute impact on the human body, summed up the damage index of the human body, the parts of the body parachute overload under impact tolerance limit (for evaluation. 5) dynamics Study on Mars missions in parachute payload multi-body system similarity criterion and the scaling test. First, determine the relevant dimensionless parameters, derivation of dynamic similarity law, determine the similarity ratio and guide zoom ground test design of earth and Mars flight test system, carry out the parachute system scaling test by airship airdrop platform, get the parachute and system of ballistic parameters, combined with the parachute falling process dynamic model and simulation analysis of small disturbance stability and flight mechanics of parachute system theory, comparison The results verify the validity of the test system than the applicability and dynamic model of the parachute retraction. (6) to enter Mars, deceleration and landing (Entry Descet, and Landing, EDL) flight trajectory of the whole process of the integrated simulation are established. Disk gap band parachute landing system into section, straightening, dynamic model of inflation and deceleration landing parachute, adaptive control method of obtaining opening point based parameters, and related research and Simulation of the whole trajectory entering and deceleration process. Finally, based on the object-oriented design language, the integration stage dynamics module established a multidisciplinary integrated simulation framework for parachute and the lander EDL whole process trajectory and opening process dynamic 3D scene display, which is convenient for the system optimization design. The coupling dynamics of deceleration parachute systems around the working process of parachute systems 鐨勬祦鍥鴻,
本文編號:1592736
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1592736.html
最近更新
教材專著