親油疏水型海綿和膜基油水分離材料的制備及其性能研究
本文關鍵詞: 吸油材料 油水分離膜 聚氨酯海綿 不銹鋼網(wǎng) 尼龍布 出處:《上海大學》2016年博士論文 論文類型:學位論文
【摘要】:隨著經(jīng)濟的快速發(fā)展,各類溢油事故以及含油污水的排放對水體和生態(tài)環(huán)境造成的油類污染也隨之增加,從而給人類帶來的傷害也逐漸加重。為了保護我國及世界的生態(tài)環(huán)境、防治油污污染,開展高效吸油材料及油水分離膜的制備及應用研究具有重要的科研價值和現(xiàn)實意義。優(yōu)良的吸油材料應具有超疏水超親油特性、較高的吸油能力、良好的儲油效果、吸油后易回收等特點,同時具有良好的回用性和生物可降解性等性能;膜基油水分離材料更應具備高效的油水分離特性。但目前現(xiàn)有吸油材料在吸油能力、材料回用性以及油水分離膜在油水分離效果等方面都存在缺點,這限制了它們的實際應用。因此,針對以上問題,本論文采用聚氨酯海綿和不銹鋼網(wǎng)及尼龍布作為基底材料,通過浸涂、接枝等方法對材料進行改性,制備了高效的改性聚氨酯海綿吸油材料和改性不銹鋼網(wǎng)及尼龍布油水分離膜,顯著提高了吸油材料的吸油能力和油水分離膜的油水分離能力;在對制備的材料進行表征的基礎上,對不同改性油水分離材料的各種性能進行了比較,同時分析了材料的經(jīng)濟可行性,并探討了不同改性吸油材料和油水分離膜的油水分離機理。(1)用聚氨酯(PU)海綿作為基體材料,通過石墨烯進行浸涂改性,制備超疏水超親油的聚氨酯海綿吸油材料。改性后的海綿材料由原始的超親水性變?yōu)槌杷?對水的接觸角為156.1°),吸油材料吸油性能得到明顯提高,可以吸收油品的重量最高約為自身重量的近59倍(58.98 g/g),且吸附速度快,油品的回收和海綿材料的循環(huán)利用途徑都非常簡單快捷,另外,所制備材料的回用次數(shù)在保證其對油品的最大吸油倍率不變的情況下可回用60次。(2)用聚氨酯海綿作為基體材料,對石墨烯進行改性,制備涂層更加穩(wěn)定的超疏水超親油材料。為了提高聚氨酯海綿在改性后的回用性能,我們先利用γ-甲基丙烯酰氧基三甲氧基硅氧烷(KH-570)對石墨烯進行改性,再利用改性后的石墨烯對海綿進行涂層改性,最終制備出涂層穩(wěn)定、回用性能強的超疏水吸油材料。研究結果證實改性后的石墨烯涂層海綿后,海綿的吸油性能和疏水性能得到很大提升,其對油品的吸附量最高可約達自身重量的39倍,對水的接觸角可高達161°(達到超疏水效果);且改性后海綿的回用次數(shù)也顯著提高,在保持其最大吸油量的同時,能夠通過擠壓法回收利用120次以上。(3)利用微納米氧化鋅(ZnO)和棕櫚酸(PA)改性制備了具有超疏水超親油性能的ZnO-PA改性聚氨酯海綿。該改性后海綿可快速吸附實驗中不同類型油品,對油品的吸油倍率最高可達41 g/g;其對水的接觸角為168.9°,達到了非常高的超疏水性;該涂層在海綿表面的穩(wěn)定性很好,改性聚氨酯海綿回用次數(shù)可達95次以上。(4)以不銹鋼網(wǎng)作為膜基材料,制備了具有高效油水分離效果的油水分離膜。實驗中采用浸涂和二次結晶的方法將改性二氧化硅納米顆粒涂層到不銹鋼絲網(wǎng)上。研究結果證明,不同尺寸(180、150、75和50μm)的改性不銹鋼網(wǎng)雖均未達到超疏水的效果,但其疏水性能都得到很大提高,其中50μm不銹鋼網(wǎng)對水的接觸角由原始的100.1°提高到135.3°,表現(xiàn)出高度疏水性;且由于納米二氧化硅顆粒的負載,實驗中各種尺寸的不銹鋼網(wǎng)的親油性能也得到明顯提升,其中孔徑為180μm的不銹鋼網(wǎng)對油品的接觸角由原始的40.6°降低到0°,達到了超親油性能。(5)利用尼龍布作為膜基材料,改性制備了超疏水超親油的油水分離膜。首先利用甲基三氯硅烷對納米二氧化硅進行改性,然后利用改性二氧化硅納米顆粒對尼龍布進行表面涂層改性,最終制備出油水分離效果好的油水分離膜。尼龍布由于其自身較強的韌性和機械性能而被用于油水分離膜的研究中,改性后的尼龍布表面粗糙度增加,其對水的接觸角可達150.3°;且在油水分離過程中也不需要外力的添加,油品就可以迅速透過改性后的尼龍布,而水被阻擋在尼龍布外面,從而達到油水分離的效果。(6)對海綿和膜基油水分離材料的性能進行比較分析的同時,對其經(jīng)濟可行性和油水分離機理也進行了分析探討。根據(jù)油水分離材料的市場成本調研,由經(jīng)濟可行性分析可知,海綿基吸油材料中KH-Gr海綿的經(jīng)濟性最好,成本低收益高;膜基油水分離材料中,改性尼龍布的經(jīng)濟性較好,更適用于市場銷售及實際應用。通過疏水親油模型分析表明,油水分離材料的油水分離性能主要取決于物質表面的粗糙度及其表面能。
[Abstract]:With the rapid development of economy, all kinds of oil spill accidents and oily sewage discharge of water and ecological environment caused by oil pollution has increased, which brings about the damage is also gradually increased. In order to protect the ecological environment of our country and the world, the prevention and control of pollution, it has important scientific value and practical significance of preparation and Application Study on the development of high oil absorbing materials and oil separation membrane. Oil absorbing materials should have excellent super hydrophobic properties, high oil absorption capacity, oil well, oil absorption characteristics after the easy recovery and reuse, and has good biodegradability; membrane materials should have more efficient oil-water separation the oil-water separation characteristics. But the existing oil absorbing materials in oil absorption capacity, material recycling and oil-water separation membrane in oil-water separation. There are drawbacks, which limits their Practical application. Therefore, to solve the above problems, this paper adopts polyurethane sponge and stainless steel mesh and nylon cloth as substrate by dip coating, modified materials of grafting method, the preparation of efficient modified polyurethane sponge absorbing material and modified stainless steel mesh and nylon oil-water separation membrane, significantly increased water absorbing capability of oil absorbing materials and oil separation membrane separation; based on characterization of the prepared materials, the performance of different modified oil-water separation materials were compared, and analyzed the material economic feasibility, the oil of different modified oil absorbing materials and oil-water separation membrane separation mechanism and study. (1) (PU) with polyurethane sponge as matrix material, by dip coating by graphene, polyurethane sponge absorbing material preparation of super hydrophobic. The modified sponge material from the original super Pro Water becomes super hydrophobic (the water contact angle of 156.1 degrees), oil absorbing materials absorption performance can be obviously improved, the weight of oil can absorb up to about nearly 59 times its own weight (58.98 g/g), and the adsorption speed, oil recovery and recycling use of the sponge material size is very simple fast, in addition, the prepared material recycling times to guarantee the maximum oil absorbency of oil under the same condition can be reused 60 times. (2) using polyurethane sponge as a substrate material of graphene modified coating preparation more stable super hydrophobic materials. In order to improve the polyurethane the sponge in modified reuse performance, we first use gamma methacryloxypropyl trimethoxy siloxane (KH-570) on graphene modified by graphene modified by the sponge modified, prepared coating stability and reuse performance of super strong Hydrophobic oil absorbing materials. The results confirmed that the modified graphene coated sponge after, sponge absorption properties and hydrophobic properties have been greatly improved, the adsorption capacity of oil up to about 39 times its own weight, the water contact angle can reach 161 degrees (up to super hydrophobic effect) and after modification; sponge the recycling times also increased significantly, while maintaining its maximum absorption at the same time, through the extrusion method of recycling 120 times. (3) the use of micro nano Zinc Oxide (ZnO) and palmitic acid (PA) with super hydrophobic properties of ZnO-PA modified polyurethane sponge was modified by the system. The modified sponge can rapid adsorption experiments on different types of oil, the oil absorption rate of up to 41 g/g; of the water contact angle of 168.9 degrees, reached the super hydrophobic coating is very high; the good stability in the sponge surface, modified polyurethane sponge recycling times More than 95 times. (4) stainless steel mesh as membrane materials, preparation of oil and water has high effect of oil-water separation membrane. Experiments using dip coating method and two crystallization of modified silica nanoparticles coating to the stainless steel wire net. The results proved that different sizes (180150,75 and 50 m) modified stainless steel net although did not reach the super hydrophobic effect, but its hydrophobic properties have been greatly improved, including 50 m stainless steel net contact angles of water by the original 100.1 degrees to 135.3 degrees, showing high hydrophobicity; and because the nano silica particles two, various sizes in the experiment of stainless steel net oil performance has also been significantly improved, the pore diameter of 180 m stainless steel net oil contact angle by the original 40.6 degrees down to 0 degrees, reached superoleophilic properties. (5) the use of nylon cloth as the membrane material, modified to prepare Water super hydrophobic membrane. The three methyl chlorosilane of nano silica was modified, and then use the modified silica nanoparticles on the nylon fabric surface coating modification, the final preparation of the oil-water oil-water separation effect good separation membrane. The nylon cloth due to its strong toughness and mechanical properties. Is used to study the oil-water separation membrane, modified nylon cloth after the surface roughness increases, the contact angle to water can reach 150.3 DEG; and in the oil-water separation process does not need to add external oil, you can quickly through the modified nylon cloth, nylon cloth and water is blocked in the outside. In order to achieve the oil-water separation effect. (6) the performance of sponge and membrane based oil-water separation material is analyzed. At the same time, the economic feasibility and the oil-water separation mechanism was also discussed. According to the oil-water separation material The cost of market research, from the analysis of economic feasibility, economy of base oil absorbing materials KH-Gr sponge sponge is best, high cost and low income; membrane based water separation materials, economy of modified nylon cloth is better, more suitable for the market sales and practical application. Through hydrophobic model analysis showed that the performance of oil-water separation of oil and water the separation of materials depends on the material surface roughness and surface energy.
【學位授予單位】:上海大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:X55
【相似文獻】
相關期刊論文 前10條
1 陳頌陽;魏從達;吳奇霖;許晶禹;;管道式油水分離系統(tǒng)分離特性研究[J];水動力學研究與進展A輯;2013年06期
2 陳彬;劉閣;張賢明;陳立功;;真空環(huán)境中油水分離的試驗研究[J];實驗力學;2013年06期
3 岳樺;油水分離系統(tǒng)[J];國外科技動態(tài);1998年08期
4 f永強;樊靜波;;餐廚廢棄物油脂提取技術的研究[J];河南科技;2013年21期
5 姚方;;SO—2000型刮油機油水分離系統(tǒng)的設計[J];科技情報開發(fā)與經(jīng)濟;2007年04期
6 卓沁;油水分離機[J];今日科技;1997年06期
7 孫玉華,鄧凡良,周玉國,劉艷明;聯(lián)合站油水分離過程動態(tài)數(shù)學模型[J];大慶石油學院學報;1998年02期
8 馮瓊瑤;;油水分離湯勺[J];科學24小時;2008年06期
9 凌國平;油水分離旋流器內部流場的數(shù)值模擬[J];蘇州大學學報(自然科學);1995年01期
10 ;[J];;年期
相關會議論文 前6條
1 史仕熒;吳應湘;許晶禹;劉敏;羅昌華;王勝;;導流片型管道式分離器油水分離結構優(yōu)化[A];第十三屆全國水動力學學術會議暨第二十六屆全國水動力學研討會論文集——E工業(yè)流體力學[C];2014年
2 王珂?zhèn)?;基于膜技術進行油水分離過程特性研究[A];中國機械工程學會摩擦學分會潤滑技術專業(yè)委員會第九屆(溫州)學術年會論文集[C];2004年
3 張鵬;;現(xiàn)代油水分離技術[A];2003年11省區(qū)市機械工程學會學術會議論文集[C];2003年
4 蔡文斌;薄啟煒;李兆敏;;井下油水分離旋流器室內實驗研究[A];第二十屆全國水動力學研討會文集[C];2007年
5 強光初;;論表面工程行業(yè)的油水分離[A];2002北京電鍍行業(yè)清潔生產研討會論文集[C];2002年
6 李琳;劉兆閱;;具有光催化自清潔和水下超疏油性質的油水分離膜[A];中國化學會第29屆學術年會摘要集——第21分會:光化學[C];2014年
相關重要報紙文章 前7條
1 記者 朱斌斌;我市企業(yè)攻克油水分離難題[N];舟山日報;2011年
2 唐曉偉 張永琴;哈工程大發(fā)明高效油水分離裝置[N];中國船舶報;2013年
3 本報通訊員 戴敬凱 見習記者 楊濤利;發(fā)現(xiàn)油水分離新材料[N];中國環(huán)境報;2013年
4 記者 李泳溈;油水分離技術研制成功[N];吉林日報;2009年
5 李明泰邋趙亮;井下油水分離技術攻關獲重大突破[N];中國石化報;2007年
6 記者 馬昭 實習生 楊問俠;油水分離裝置未安裝到位吊銷營業(yè)執(zhí)照[N];西安日報;2010年
7 科信;新型油水分離網(wǎng)膜材料研制成功[N];中國化工報;2004年
相關博士學位論文 前2條
1 李輩輩;親油疏水型海綿和膜基油水分離材料的制備及其性能研究[D];上海大學;2016年
2 徐桂龍;疏水親油有機無機復合乳液的制備及其在油水分離濾紙的應用研究[D];華南理工大學;2011年
相關碩士學位論文 前10條
1 蔣約林;環(huán)境響應型紡織基吸附材料用于高效油水分離的研究[D];浙江理工大學;2016年
2 劉燦;超浸潤油水分離材料的制備及其性能研究[D];江蘇大學;2016年
3 高曉佳;柔性二硫化鉬海綿的制備及其油水分離和吸附性能研究[D];湘潭大學;2016年
4 李東霖;油水分離功能化表面的制備與性能研究[D];北京化工大學;2016年
5 高琳;超浸潤多孔金屬材料油水分離特性及耐久性研究[D];東南大學;2016年
6 秦福濤;超疏水分離膜的制備與油水分離應用研究[D];大連理工大學;2009年
7 李沖;銅基底特殊浸潤性雙向油水分離膜的制備及應用[D];哈爾濱工業(yè)大學;2015年
8 陳文征;波紋板油水分離技術研究[D];中國石油大學;2008年
9 陸啟富;超疏水膜油水分離裝置的設計與實驗研究[D];大連理工大學;2011年
10 丁德智;新型油水分離裝置的研制[D];大連海事大學;2003年
,本文編號:1517762
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1517762.html