輕小型三線陣航攝儀關(guān)鍵技術(shù)研究
本文關(guān)鍵詞:輕小型三線陣航攝儀關(guān)鍵技術(shù)研究 出處:《中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 三線陣 航空測(cè)繪相機(jī) 立體測(cè)繪 推掃成像 光學(xué)系統(tǒng) 內(nèi)方位元素標(biāo)定 視準(zhǔn)軸誤差
【摘要】:三線陣航攝儀通過(guò)三個(gè)視角的線陣推掃成像,可以有效提高立體測(cè)繪精度,降低攝影測(cè)量過(guò)程對(duì)地面控制點(diǎn)的依賴,并且提供了多光譜成像的擴(kuò)展能力,在數(shù)據(jù)生產(chǎn)效率和影像質(zhì)量方面有明顯的優(yōu)勢(shì)。幾款主流的三線陣航攝儀存在體積大、重量大、操作復(fù)雜、時(shí)效性差等缺點(diǎn),相比之下,輕型機(jī)和無(wú)人機(jī)遙感系統(tǒng)具有續(xù)航時(shí)間長(zhǎng)、成本低、機(jī)動(dòng)靈活、操作簡(jiǎn)便等優(yōu)點(diǎn)。因此本課題將重點(diǎn)研究輕小型三線陣航攝儀系統(tǒng)的關(guān)鍵技術(shù),突破三線陣航攝儀輕小型化工程應(yīng)用的關(guān)鍵難題,實(shí)現(xiàn)系統(tǒng)在測(cè)繪遙感領(lǐng)域中的規(guī);瘧(yīng)用。本課題所研究的關(guān)鍵技術(shù)主要圍繞航攝儀的光學(xué)成像技術(shù)和制圖測(cè)量技術(shù)展開,主要研究的內(nèi)容包括以下幾點(diǎn):1.提出了輕小型三線陣航攝儀系統(tǒng)的成像模式和總體方案,給出了航攝儀的指標(biāo)體系和結(jié)構(gòu)布局,提出了基于單鏡頭搭配新型COMS光電探測(cè)器的成像系統(tǒng)方案。完成了像方遠(yuǎn)心光學(xué)系統(tǒng)和雙高斯光學(xué)系統(tǒng)的設(shè)計(jì)與優(yōu)化,并對(duì)光譜特性、調(diào)制傳函、系統(tǒng)畸變、像差、相對(duì)照度均勻性、公差分配、體積重量和加工裝調(diào)難度等進(jìn)行了詳細(xì)的對(duì)比與分析。由于光譜特性、畸變參數(shù)、成像能力和環(huán)境適應(yīng)性的優(yōu)勢(shì),選用了像方遠(yuǎn)心光學(xué)系統(tǒng)的鏡頭結(jié)構(gòu)形式。該光學(xué)系統(tǒng)的視場(chǎng)達(dá)到80°,在80lp/mm的空間頻率處,光學(xué)系統(tǒng)調(diào)制傳遞函數(shù)優(yōu)化至0.4,系統(tǒng)畸變最大值優(yōu)化至0.1%,并且光學(xué)元件重量控制在1.3kg以內(nèi)。經(jīng)過(guò)光學(xué)系統(tǒng)的環(huán)境適應(yīng)性分析,選擇了溫度適用范圍更優(yōu)的鈦合金材料,對(duì)環(huán)境溫度、大氣壓強(qiáng)和航攝高度進(jìn)行了仿真計(jì)算,并且對(duì)機(jī)載力學(xué)環(huán)境下的光機(jī)結(jié)構(gòu)穩(wěn)定性進(jìn)行了仿真計(jì)算,各項(xiàng)指標(biāo)均能滿足系統(tǒng)總體要求。2.基于航空測(cè)繪遙感領(lǐng)域的應(yīng)用需求,該航攝儀系統(tǒng)的制圖精度需要達(dá)到1:500、1:1000和1:2000比例尺標(biāo)準(zhǔn)的精度等級(jí)。根據(jù)攝影測(cè)量理論的前方交會(huì)原理,分析推導(dǎo)了輕小型三線陣航攝儀直接定向模式下的地物定位誤差模型,并完成了系統(tǒng)各誤差項(xiàng)的敏感度分析,得到位置測(cè)量精度、姿態(tài)測(cè)量精度、相機(jī)標(biāo)定精度等主要誤差項(xiàng)。并結(jié)合系統(tǒng)體積重量的約束,對(duì)關(guān)鍵組件進(jìn)行了選型。對(duì)三線陣航攝儀的數(shù)據(jù)時(shí)鐘同步系統(tǒng)進(jìn)行了設(shè)計(jì)與分析,提出了校時(shí)、守時(shí)和用時(shí)的數(shù)據(jù)同步流程,同步精度達(dá)到微秒量級(jí),實(shí)現(xiàn)了航攝儀系統(tǒng)外方位元素和線陣影像的高精度配準(zhǔn)。最后,將多余度影像匹配和空中三角測(cè)量環(huán)節(jié)融入制圖精度分析模型中,得到該系統(tǒng)的航測(cè)成果平面定位精度能夠達(dá)到0.3m,數(shù)字高程模型精度可達(dá)到0.25m。3.提出了基于衍射光學(xué)元件的相機(jī)幾何參數(shù)標(biāo)定系統(tǒng)方案,該方法具有精度高、成本低、分析速度快等特點(diǎn)。對(duì)系統(tǒng)中的激光器、準(zhǔn)直透鏡、空間濾波器和濾光片等關(guān)鍵組件進(jìn)行了分析與選型,利用模擬退火算法,對(duì)衍射光柵的掩模板圖案和坐標(biāo)參數(shù)進(jìn)行了優(yōu)化設(shè)計(jì)。在標(biāo)定系統(tǒng)中,對(duì)基于徑向畸變約束的相機(jī)標(biāo)定算法進(jìn)行了改進(jìn),設(shè)計(jì)并開發(fā)了相機(jī)標(biāo)定數(shù)據(jù)處理流程和軟件,最終將量測(cè)相機(jī)內(nèi)方位元素的標(biāo)定精度提高至微米量級(jí),完成與室外三維標(biāo)定場(chǎng)測(cè)試結(jié)果的對(duì)比分析。另外,介紹了三線陣航攝儀系統(tǒng)視準(zhǔn)軸誤差的檢校原理,給出系統(tǒng)姿態(tài)測(cè)量的坐標(biāo)變換關(guān)系,提出綜合數(shù)據(jù)時(shí)鐘同步的視準(zhǔn)軸誤差的解算模型。利用航攝任務(wù)中的地面檢校場(chǎng),通過(guò)空中三角測(cè)量法,對(duì)系統(tǒng)視準(zhǔn)軸誤差進(jìn)行了解算與修正。利用相機(jī)標(biāo)定檢校數(shù)據(jù),完成了典型地貌的測(cè)圖精度試驗(yàn),其測(cè)圖精度結(jié)果滿足國(guó)家標(biāo)準(zhǔn)規(guī)定的大比例尺制圖精度要求。
[Abstract]:Three line array aerial camera by three from the perspective of linear pushbroom imaging, can effectively improve the mapping accuracy, reduce photogrammetry process control points depending on the ground, and provides scalability of multi spectral imaging, has obvious advantages in data production efficiency and image quality. Several mainstream line three array aerial camera has large volume, large weight, complex operation, compared with the disadvantages, poor timeliness, light aircraft and UAV remote sensing system has the long life, low cost, flexible and easy operation etc.. Therefore, this project will focus on the small three line array aerial camera system key technology the breakthrough, three line array aerial camera and light small engineering problems, realize the scale of application system in the field of Surveying and mapping in remote sensing. The key technology in this paper mainly focuses on the navigation technology and mapping optical imaging measurement camera Technology, the main research contents include the following: 1. the small three line array aerial camera system imaging mode and overall scheme, gives the index system and the layout of aerial camera, the imaging system of single lens COMS photoelectric detector based on collocation model. Completed the design and optimization of image telecentric optical system and double Gauss optical system, and the spectral characteristics, modulation transfer function, system aberration, aberration, relative illumination uniformity, tolerance allocation, volume weight and fabrication difficulty are compared and analyzed in detail. The spectral characteristics, distortion parameters, imaging capability and environmental adaptability advantage the lens structure form, like a telecentric optical system. The optical system of the field of view is 80 degrees, the spatial frequency at 80lp/mm, the optical system modulation transfer function optimization to 0.4, the maximum value of the optimization variable system distortion To 0.1%, and the optical element weight control within 1.3KG. Through the optical system of environmental adaptability analysis, selection of a titanium alloy temperature range better, the environment temperature, atmospheric pressure and aerial height was calculated, and the stability of the machine structure of airborne mechanical environment was simulated, the indexes can meet the system requirements of.2. application requirements in the field of aerial surveying and mapping based on remote sensing, precision grade of the aerial camera system mapping accuracy reached 1:500,1:1000 or 1:2000 scale standard. According to the principle of intersection photogrammetry theory, analysis of light and small three line array aerial object positioning error model for direct directional pattern the sensitivity of the system and complete the analysis of the error, position accuracy, attitude measurement accuracy, the accuracy of the calibration of the error term. According to the system volume and weight constraints, the key components are selected. The three line array aerial data clock synchronization system is designed and analyzed, and puts forward the school, punctuality and used when data synchronization process, the synchronization precision can reach microsecond, realized the high precision registration of aerial camera system orientation the elements and line images. Finally, the matching of redundant images and aerial triangulation links into the mapping accuracy analysis model, obtained the results of aerial survey plane positioning accuracy of the system can reach 0.3m, the accuracy of digital elevation model can reach 0.25m.3. the calibration system of geometric parameters of camera based on a diffractive optical element, this method has accuracy high, low cost, rapid analysis and other characteristics. The laser system, a collimating lens, a key component of spatial filter and filter are analyzed and selected. By using simulated annealing The algorithm, mask pattern and coordinate parameters for diffraction grating are optimized. In the calibration system, the calibration algorithm of camera based on the radial distortion constraint is improved, the design and development of the camera calibration data processing and software, will eventually improve the precision of calibration to micron scale measurement camera inside a element. Comparison of test results and outdoor 3D calibration field. In addition, the three line array aerial camera system calibration principle of quasi axial error, coordinate transformation gives the system of attitude measurement, puts forward a comprehensive data clock synchronization algorithm model of quasi optic axis error. Using the ground calibration field in aerial photography through the air, triangulation system of collimation axis error are calculated. The calibration and correction of calibration data using the camera, completed the mapping accuracy test of typical landforms, the precision of mapping results meet The requirements for large scale mapping precision stipulated by the national standard.
【學(xué)位授予單位】:中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:P237
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前1條
1 周燁鋒;邱慧娟;李卓;;基于遠(yuǎn)心光學(xué)系統(tǒng)散焦圖像的距離估計(jì)[A];2006年全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)會(huì)議文集(D 光電信息處理技術(shù)專題)[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 王超;輕小型三線陣航攝儀關(guān)鍵技術(shù)研究[D];中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所;2017年
相關(guān)碩士學(xué)位論文 前3條
1 詹翠平;雙遠(yuǎn)心光學(xué)測(cè)量鏡頭匹配濾波特性及應(yīng)用研究[D];華南理工大學(xué);2016年
2 于亞琳;基于雙遠(yuǎn)心光學(xué)系統(tǒng)的外螺紋參數(shù)檢測(cè)技術(shù)研究[D];西安工業(yè)大學(xué);2016年
3 胡磊;內(nèi)窺遠(yuǎn)心測(cè)量?jī)x的研究[D];長(zhǎng)春理工大學(xué);2012年
,本文編號(hào):1423552
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1423552.html