近紅外光譜吸收式氣體檢測系統(tǒng)的研究
本文關(guān)鍵詞:近紅外光譜吸收式氣體檢測系統(tǒng)的研究 出處:《吉林大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 紅外氣體檢測 波長調(diào)制光譜 分布反饋式激光器 激光器溫度控制 激光器電流驅(qū)動 數(shù)字正交鎖相放大器
【摘要】:近年來,我國安全生產(chǎn)問題和環(huán)境問題十分嚴(yán)峻。一方面,煤礦瓦斯爆炸、危險氣體泄漏等安全事故頻發(fā),給國家造成了重大的經(jīng)濟(jì)損失和惡劣的社會影響。另一方面,大氣中溫室氣體濃度的不斷升高也帶來了一系列的環(huán)境問題。因此,先進(jìn)的氣體傳感器研發(fā)工作十分重要;诩t外吸收光譜原理進(jìn)行氣體檢測是目前國內(nèi)外較為先進(jìn)的方法。與傳統(tǒng)的化學(xué)類傳感器相比,其具有檢測靈敏度高、響應(yīng)速度快、選擇性好、檢測范圍大、穩(wěn)定性好等優(yōu)點(diǎn)。紅外氣體傳感器還具有非接觸性測量和壽命長的特點(diǎn),非常適用于煤礦、工業(yè)控制及大氣監(jiān)測等領(lǐng)域?烧{(diào)諧半導(dǎo)體激光吸收光譜技術(shù)是一種高精度紅外氣體檢測的方法。該技術(shù)利用波長可以調(diào)諧的二極管激光器作為光源,通過改變激光器的溫度和電流使得激光器中心波長反復(fù)掃過被測氣體的吸收峰。由此可獲得高分辨率的氣體吸收信號,以達(dá)到對氣體定性、定量檢測的目的。與可調(diào)諧半導(dǎo)體激光吸收光譜技術(shù)相結(jié)合,波長調(diào)制光譜技術(shù)通過對激光器進(jìn)行高頻調(diào)制,并提取氣體吸收信號的諧波波形,極大地降低了系統(tǒng)中的固有噪聲,進(jìn)一步提高了檢測靈敏度。本文采用可調(diào)諧半導(dǎo)體激光吸收光譜技術(shù)與波長調(diào)制光譜技術(shù)相結(jié)合的方法,設(shè)計并制作了以近紅外分布反饋式激光器為光源的氣體檢測系統(tǒng)。首先,以紅外吸收光譜理論為基礎(chǔ),針對本論文所設(shè)計的檢測系統(tǒng)進(jìn)行了理論分析。通過對系統(tǒng)中檢測流程和數(shù)據(jù)處理的逐步推導(dǎo),將激光器驅(qū)動與調(diào)制、光電轉(zhuǎn)換、諧波信號、氣體濃度等相關(guān)參數(shù)進(jìn)行關(guān)聯(lián)運(yùn)算,驗證了二次諧波信號與氣體濃度的相關(guān)性。并使用MATLAB軟件進(jìn)行了系統(tǒng)仿真,為氣體檢測實(shí)驗提供參考依據(jù)。其次,根據(jù)系統(tǒng)中使用的激光器的具體驅(qū)動特性,設(shè)計并制作了激光器溫度控制電路和電流驅(qū)動調(diào)制電路,使其輸出光譜滿足波長調(diào)制的要求,這是本文的重點(diǎn)內(nèi)容。基于模擬PID算法,對溫度補(bǔ)償網(wǎng)絡(luò)電路進(jìn)行了元件配置和參數(shù)優(yōu)化。激光器在溫度控制電路的恒溫控制下,輸出光譜穩(wěn)定,長時間工作時中心波長不漂移。在室溫環(huán)境下激光器長時間工作的溫度波動在±0.02℃范圍以內(nèi)。研制了激光器電流驅(qū)動調(diào)制電路,通過低頻鋸齒波的電流驅(qū)動,可以使激光器波長周期性變化而反復(fù)掃過氣體吸收峰。同時,疊加高頻正弦波對激光器進(jìn)行調(diào)制,用于諧波提取。另外,為提高激光器溫度控制的穩(wěn)定性以及降低系統(tǒng)噪聲,研制了低紋波線性穩(wěn)壓電源作為系統(tǒng)電源,其紋波干擾遠(yuǎn)小于常規(guī)的開關(guān)電源。再次,針對光源系統(tǒng)輸出的激光信號,研制了用于檢測和處理氣體吸收信號的檢測系統(tǒng)。檢測系統(tǒng)分為差分光路系統(tǒng)、透射型光纖氣室、光電轉(zhuǎn)換電路和數(shù)字式正交鎖相放大器幾部分,是本文的又一重點(diǎn)內(nèi)容。差分光路對單光源進(jìn)行分光處理,兩路信號的差分處理可以有效地減小光源噪聲的影響。以光纖準(zhǔn)直器為核心光學(xué)器件,設(shè)計了結(jié)構(gòu)穩(wěn)定、使用光纖進(jìn)行通信的透射型氣室。使用高性能的In Ga As光電二極管制作了光電轉(zhuǎn)換電路,將氣體吸收信號與參考信號進(jìn)行光電轉(zhuǎn)換,通過差分電路得到的差分信號包含了氣體濃度信息。設(shè)計并制作了數(shù)字正交鎖相放大器,將用于諧波提取的相敏檢波過程通過軟件程序完成。在對諧波提取算法進(jìn)行仿真分析的基礎(chǔ)上,通過氣體實(shí)驗成功提取了諧波信號,并對諧波提取的穩(wěn)定性進(jìn)行了測試,從實(shí)驗角度再次驗證了諧波信號與氣體濃度的相關(guān)性。最后,通過甲烷和一氧化碳的氣體檢測實(shí)驗,對檢測系統(tǒng)進(jìn)行了性能測試實(shí)驗。使用動態(tài)配氣方式,針對系統(tǒng)檢測下限、重復(fù)性、穩(wěn)定性、響應(yīng)時間和示值誤差等性能指標(biāo)進(jìn)行了相關(guān)實(shí)驗。通過阿倫方差進(jìn)行數(shù)據(jù)分析,系統(tǒng)的甲烷檢測下限約為29 ppm,一氧化碳檢測下限約為148 ppm。實(shí)驗結(jié)果表明,檢測系統(tǒng)具有良好的檢測靈敏度和穩(wěn)定性,同時該檢測系統(tǒng)還具有集成度高、成本低等優(yōu)點(diǎn),通過更換不同波長的激光器,還可以對其它氣體進(jìn)行檢測。
[Abstract]:In recent years, production safety and environmental problems is very serious in China. On the one hand, the coal mine gas explosion, dangerous gas leakage safety accidents, resulting in significant economic losses and bad social impact to the country. On the other hand, atmospheric concentrations of greenhouse gases continue to rise has also brought a series of environmental problems. Therefore, research and development of advanced gas sensor is very important. The infrared absorption spectrum principle of gas detection methods at home and abroad is relatively advanced. Compared with chemical sensors based on the traditional, it has high sensitivity, fast response, good selectivity, wide detection range, good stability of infrared gas sensor has the characteristics. Non contact measurement and long service life, is suitable for the coal mine, the field of industrial control and monitoring. Tunable diode laser absorption spectroscopy technology is a kind of high precision The method of infrared gas detection. The technology uses a diode laser wavelength can be tuned by changing the laser as the light source, the temperature and current makes the laser center wavelength repeatedly swept the absorption peak of the measured gas. The gas absorption signal to obtain high resolution, in order to achieve the purpose of gas qualitative, quantitative detection with tunable. Semiconductor laser absorption spectroscopy combined with wavelength modulation spectroscopy by high frequency modulation of the laser, and the extraction of harmonic wave gas absorption signal, which greatly reduces the system's inherent noise, further improve the detection sensitivity. This paper uses the method of combining tunable diode laser absorption spectroscopy and wavelength modulation spectroscopy. The design and fabrication of the near infrared distributed feedback laser gas detection system. Firstly, the infrared absorption spectrum of Science On the basis of the detection system designed in this paper is analyzed. Based on the process and data processing are gradually detection system, the laser drive and modulation, photoelectric conversion, harmonic signal, gas concentration and other related parameters related operations, to verify the two harmonic signal and the gas concentration and correlation. System simulation was carried out using MATLAB software, to provide reference for gas detection experiments. Secondly, according to the specific characteristics of the laser drive system using the laser temperature control circuit and the drive current modulation circuit design and make it meet the requirements of the output spectrum of wavelength modulation, which is the main content of this paper. The simulation algorithm based on PID the optimization and configuration parameters, components of temperature compensation circuit. Laser in temperature control circuit under the control of the output spectrum is stable, long time. When the central wavelength drift. The temperature fluctuation work in room temperature laser long time is within the range of - 0.02 DEG C. Current drive laser modulation circuit is developed, driven by the current low frequency sawtooth wave, which can make the laser wavelength periodic changes repeatedly sweep gas absorption. At the same time, the high frequency modulation of sine wave superposition the laser used for harmonic extraction. In addition, in order to improve the stability of laser temperature control and reduce system noise, developed a low ripple linear regulated power supply system as power supply, the ripple interference is far less than the conventional switching power supply. Once again, the laser signal source output system, for detecting and processing gas absorption signal detection system is developed. The detection system is divided into differential optical transmission system, optical fiber gas chamber, a photoelectric conversion circuit and digital quadrature lock-in amplifier is the part. Another key difference of single light source. Optical processing optical signals, differential treatment can effectively reduce the noise of light source. Optical fiber collimator as the core to design the optical device, stable structure, transmission type gas chamber using optical fiber communication. In Ga As photodiode with high performance the production of the photoelectric conversion circuit, gas absorption signal and the reference signal of the photoelectric conversion, the differential circuit of differential signal contains gas concentration information. Making the digital orthogonal lock-in amplifier is designed and will be used for phase sensitive detection of harmonic detection is accomplished by means of software. In the simulation based on harmonic extraction algorithm the analysis on the experimental gas through the successful extraction of harmonic signals, and the stability of harmonic extraction were tested and verified again from the point of view of experimental harmonic signal and gas concentration The correlation. Finally, through the experiment of methane gas and carbon monoxide detection, the performance test of detection system. Using the dynamic gas mixing system, aiming at the detection limit, repeatability, stability, response time and error performance of the experiment. The data were analyzed with Allen variance, methane detection limit the system is about 29 ppm, the detection limit of carbon monoxide is about 148 ppm.. The experimental results show that the detection system has good sensitivity and stability at the same time, the detection system also has the advantages of high integration, low cost and other advantages, through the replacement of lasers of different wavelengths, but also can be used to detect other gases.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN247
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 褚衍平;張景超;管立君;肖長江;;雙氣室氣體檢測系統(tǒng)的研究[J];應(yīng)用光學(xué);2008年03期
2 甄麗平;司紹偉;;具有無線收發(fā)功能的氣體檢測裝置設(shè)計[J];中國科技信息;2011年09期
3 高叢;;基于單片機(jī)的多氣體檢測系統(tǒng)設(shè)計[J];中國科技信息;2008年18期
4 喬惠君;;THz輻射在氣體檢測中的應(yīng)用初探[J];科技信息(科學(xué)教研);2007年14期
5 方靜;劉文清;張?zhí)焓?;逐線積分氣體吸收模型及其在NDIR氣體檢測中的應(yīng)用[J];光譜學(xué)與光譜分析;2008年06期
6 閆大明;;氣體檢測報警儀在石油化工企業(yè)中的應(yīng)用[J];黑龍江科技信息;2011年30期
7 安歲芹;;有害氣體檢測報警儀在工業(yè)中的應(yīng)用[J];科技致富向?qū)?2008年18期
8 喬記平;秦建敏;閆曉燕;張朝霞;;相關(guān)光譜式氣體檢測系統(tǒng)的光學(xué)仿真及優(yōu)化[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2014年05期
9 楊勇;高致慧;曹志;楊錦輝;林懷欽;陳子聰;;基于激光NO_2氣體檢測研究[J];激光技術(shù);2012年02期
10 ;[J];;年期
相關(guān)會議論文 前6條
1 李長武;;氣體檢測報警儀器的生產(chǎn)使用及發(fā)展趨勢[A];中國勞動保護(hù)科學(xué)技術(shù)學(xué)會機(jī)電安全專業(yè)委員會換屆會議論文集[C];2000年
2 孫友文;劉文清;汪世美;黃書華;于曉曼;;非分散紅外多組份氣體檢測技術(shù)及其在CEMS中的應(yīng)用[A];安徽首屆科普產(chǎn)業(yè)博士科技論壇——暨社區(qū)科技傳播體系與平臺建構(gòu)學(xué)術(shù)交流會論文集[C];2012年
3 王金鳳;;關(guān)于CO氣體檢測儀器的分析[A];農(nóng)業(yè)機(jī)械化與全面建設(shè)小康社會——中國農(nóng)業(yè)機(jī)械學(xué)會成立40周年慶典暨2003年學(xué)術(shù)年會論文集[C];2003年
4 楊勇;曹志;陳子聰;高致慧;;NO_2氣體檢測系統(tǒng)設(shè)計與研究[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
5 劉瑾;楊海馬;;光纖多氣體檢測系統(tǒng)的研究[A];第三屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2005年
6 林鍵;朱力生;浦辰雨;;近紅外吸收光譜技術(shù)在煉鋼氣體檢測中的應(yīng)用[A];自動化技術(shù)與冶金流程節(jié)能減排——全國冶金自動化信息網(wǎng)2008年會論文集[C];2008年
相關(guān)博士學(xué)位論文 前1條
1 李彬;近紅外光譜吸收式氣體檢測系統(tǒng)的研究[D];吉林大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 李悅;遠(yuǎn)程環(huán)境氣體檢測系統(tǒng)的設(shè)計與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
2 張義;一種實(shí)時空間甲烷檢測系統(tǒng)的研究[D];大連工業(yè)大學(xué);2015年
3 徐峰;基于嵌入式氣體檢測系統(tǒng)軟件設(shè)計及濃度檢測算法研究[D];重慶大學(xué);2013年
4 尹鵬;基于化學(xué)卟啉傳感器的氣體檢測系統(tǒng)的研究[D];重慶大學(xué);2009年
5 李軒;基于卟啉化學(xué)傳感器的氣體檢測系統(tǒng)算法研究[D];重慶大學(xué);2009年
6 祁冀;TDLAS氣體檢測系統(tǒng)調(diào)制系數(shù)的仿真及實(shí)驗研究[D];長春理工大學(xué);2014年
7 楊蕊;數(shù)字化光纖氣體檢測系統(tǒng)方案研究[D];哈爾濱工程大學(xué);2010年
8 劉平;基于卟啉化學(xué)傳感器的氣體檢測系統(tǒng)軟件研究[D];重慶大學(xué);2010年
9 陳虎;CO氣體檢測與排放回收綜合控制系統(tǒng)的研制[D];武漢科技大學(xué);2011年
10 張佳佳;肺癌氣體檢測氣路設(shè)計[D];重慶大學(xué);2014年
,本文編號:1408417
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1408417.html