中緯度臨近空間大氣風(fēng)場(chǎng)變化特性研究
本文關(guān)鍵詞:中緯度臨近空間大氣風(fēng)場(chǎng)變化特性研究 出處:《中國(guó)科學(xué)院國(guó)家空間科學(xué)中心》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 臨近空間 中緯度 中間層和低熱層 大氣風(fēng)場(chǎng) 大氣行星波 大氣潮汐波 大氣重力波 平流層爆發(fā)性增溫 中頻雷達(dá) 流星雷達(dá) WACCM模式
【摘要】:本文主要研究區(qū)域?yàn)?0-100 km臨近空間大氣,包含平流層、中間層和低熱層,是地球大氣的重要組成部分。臨近空間同時(shí)受空間環(huán)境以及低層大氣的影響,存在復(fù)雜的現(xiàn)象和變化特性。大氣風(fēng)場(chǎng)對(duì)臨近空間大氣能量和動(dòng)量傳輸過程起到重要的作用,直接影響臨近空間的動(dòng)力學(xué)、環(huán)流結(jié)構(gòu),對(duì)臨近空間的熱力學(xué)和化學(xué)傳輸也有深遠(yuǎn)影響。中緯度臨近空間大氣風(fēng)場(chǎng)存在顯著的多尺度變化特性,具體特征有別于其他緯度,是低緯向高緯的過渡帶。開展中緯度臨近空間大氣風(fēng)場(chǎng)的研究,有助于理解中緯度臨近空間大氣環(huán)境特性,并可促進(jìn)全球耦合研究。本文以中緯度臨近空間大氣風(fēng)場(chǎng)為研究對(duì)象,重點(diǎn)圍繞大氣潮汐波和平流層爆發(fā)性增溫事件誘發(fā)的大氣活動(dòng)規(guī)律進(jìn)行了深入研究。本文的主要內(nèi)容有以下幾點(diǎn):(1)利用MERRA再分析資料和URAP資料對(duì)WACCM模擬的臨近空間大氣(20-100 km)緯圈平均緯向風(fēng)、經(jīng)向風(fēng)的季節(jié)變化進(jìn)行檢驗(yàn)。結(jié)果表明,WACCM能夠較好地模擬全球臨近空間大氣風(fēng)場(chǎng)的氣候特征,可較準(zhǔn)確地給出北半球的緯向風(fēng),表明WACCM模式可用于對(duì)北半球中緯度臨近空間大氣風(fēng)場(chǎng)進(jìn)行深入的研究。(2)利用中國(guó)廊坊站(39.4°N,116.7°W)流星雷達(dá)整一年的水平風(fēng)場(chǎng)觀測(cè)資料分析廊坊MLT區(qū)域(80-100 km)大氣平均緯向風(fēng)和經(jīng)向風(fēng)隨高度和季節(jié)的變化特征。結(jié)果表明平均緯向風(fēng)和經(jīng)向風(fēng)都表現(xiàn)出顯著的季節(jié)變化。平均緯向風(fēng)在冬季MLT盛行西風(fēng),極大值位于中間層,西風(fēng)隨高度增加而減弱;夏季中間層為東風(fēng),低熱層為強(qiáng)西風(fēng),風(fēng)向轉(zhuǎn)換高度位于~82km。平均經(jīng)向風(fēng)在冬季以南風(fēng)為主,在夏季盛行北風(fēng)。平均緯向風(fēng)和經(jīng)向風(fēng)在春、秋兩季為冬季特征和夏季特征的過渡階段。流星雷達(dá)觀測(cè)結(jié)果與WACCM4模式和HWM93模式模擬的氣候變化特點(diǎn)基本一致。(3)利用廊坊流星雷達(dá)分析了廊坊上空MLT大氣緯向風(fēng)、經(jīng)向風(fēng)潮汐的季節(jié)變化特征。廊坊MLT區(qū)域周日潮汐和半日潮汐波動(dòng)都比較顯著,有明顯的季節(jié)變化特征。周日潮汐振幅在88 km以下為半年變化,極大值位于2-3月和10月,極小值位于冬、夏季;在88 km以上為周年變化,振幅冬末春初最強(qiáng),最大值出現(xiàn)在2月位于92 km,緯向分量和經(jīng)向分量分別為42 m/s和38 m/s,最小值位于夏季。周日潮汐相位在秋、冬季比春、夏季提前。半日潮汐主要呈現(xiàn)半年變化,在5月和9月最強(qiáng),振幅在9月(~24 m/s)略強(qiáng)于5月(~20 m/s),極小值位于冬、夏季。半日潮汐相位在春、夏季比秋、冬季提前。此外,廊坊風(fēng)場(chǎng)潮汐的觀測(cè)結(jié)果與WACCM4模式模擬結(jié)果進(jìn)行了比較,結(jié)果表明兩者的主要特征有較明顯的區(qū)別。與40°N附近其他站點(diǎn)風(fēng)場(chǎng)潮汐觀測(cè)結(jié)果的比較結(jié)果表明中緯度MLT風(fēng)場(chǎng)潮汐有顯著的隨經(jīng)度變化特性。(4)利用廊坊MF雷達(dá)和MERRA再分析資料完整呈現(xiàn)了廊坊上空臨近空間(20-100 km)緯向風(fēng)對(duì)2010年和2013年SSW事件的響應(yīng),同時(shí)與Fort Collins(41°N,105°W)上空緯向風(fēng)對(duì)2009年SSW事件的響應(yīng)進(jìn)行了比較。結(jié)果顯示緯向風(fēng)對(duì)SSW都存在響應(yīng),但在表現(xiàn)出不同的細(xì)節(jié),主要是反轉(zhuǎn)高度區(qū)域。利用SD-WACCM模式模擬結(jié)果分析SSW期間形勢(shì)場(chǎng),結(jié)果顯示,在SSW期間,行星波波1和波2有強(qiáng)烈活動(dòng),中緯度緯圈平均緯向風(fēng)減弱為弱西風(fēng)。受行星波相位的調(diào)制作用,同緯度緯向風(fēng)對(duì)SSW的響應(yīng)隨經(jīng)度變化。由于行星波相位隨高度向西傾斜,導(dǎo)致中緯度地區(qū)臨近空間不同區(qū)域的變化不同。(5)利用SD-WACCM模式的2013年SSW期間全球大氣形勢(shì),對(duì)中緯度臨近空間大氣緯圈平均特征進(jìn)行了動(dòng)力學(xué)診斷分析。結(jié)果表明,SSW期間,行星波(PW1和PW2)活動(dòng)、重力波(鋒面激發(fā)重力波、對(duì)流激發(fā)重力波和地形重力波)傳播過程、剩余環(huán)流都發(fā)生了明顯的變化,對(duì)臨近空間緯向風(fēng)的發(fā)展起不同作用。剩余環(huán)流與溫度異常有直接關(guān)系。本章揭示了引起中緯度大氣變化的物理機(jī)制。
[Abstract]:In this paper, the main research area is 20-100 km near space atmosphere, including the stratosphere, mesosphere and lower thermosphere, is an important part of the earth's atmosphere. The near space is also affected by the space environment and the lower atmosphere, and the existence of the phenomenon of change of complex characteristics. Atmospheric wind field is an important effect for near space atmospheric energy and momentum the transmission process, structural dynamics, directly affect the near space circulation, thermodynamic and chemical transmission of near space also has a far-reaching influence. In the mid latitude near space atmospheric wind field has multi-scale variation characteristics significantly, specific characteristics different from other latitudes, low latitude to high latitude transition zone. In mid latitude near the research atmospheric wind field space, it can help to understand the characteristics of the space environment near latitude atmosphere, and promote global coupling research. This paper takes the mid latitude near space atmospheric wind field as the research object, Focus on the activities of the atmosphere atmospheric tidal waves and stratospheric sudden warming events induced by in-depth research. The main contents of this paper are as follows: (1) analysis of near space atmospheric simulation data and URAP data of WACCM by MERRA (20-100 km) zonal mean zonal wind, the seasonal variation of the wind test. The results show that WACCM can simulate the global climate characteristics near atmospheric wind field space, can accurately give the northern hemisphere zonal wind, which shows that the WACCM model can be used in the mid latitudes of the Northern Hemisphere near space atmospheric wind field for further study. (2) the Chinese LangFang Railway Station (39.4 ~ N, 116.7 W) meteor radar wind for a whole year of field observation data analysis of Langfang MLT region (80-100 km) average atmospheric zonal wind and meridional wind with altitude and seasonal variation characteristics. Mean zonal wind and meridional wind are the A significant seasonal variation. The mean zonal wind in winter MLT prevailing westerly winds, maximum wind in the middle layer, decreased with increase in height; the middle layer is the summer wind, low layer is a strong westerly wind direction changing, located at the height of ~82km. average meridional wind in winter in South, in summer. The mean zonal wind and northly wind the wind in spring, winter and summer transition characteristics characteristics of the autumn season two. Meteor radar observations of the characteristics of climate change are simulated with WACCM4 model and HWM93 model are basically the same. (3) analysis of the Langfang air MLT atmospheric zonal wind using the Langfang meteor radar, the seasonal variation trend of Xi to Langfang MLT. Regional Sunday tides and semidiurnal tidal fluctuations are more significant, there are significant seasonal variation. Sunday tidal amplitude is below 88 km for half a year change, the maximum in 2-3 and October, minimum in winter and summer; In the above 88 km annual variation amplitude, the strongest in late winter and early spring, the maximum value in February is 92 km, zonal and meridional component are respectively 42 m/s and 38 m/s, the minimum value in the summer. On Sunday the tidal phase in autumn and winter than in spring and summer in advance. The main semidiurnal tide appears semi annual variation in May and September, the strongest amplitude in September (~24 m/s) is slightly stronger than in May (~20 m/s), the minimum value in winter and summer. The semidiurnal tide phase in spring and summer than in autumn and winter in advance. In addition, the Langfang wind tidal observations and results of WACCM4 model were compared. The results show that the main features of the two has more obvious difference. Results compared with the 40 N near other sites of wind tides show that mid latitude MLT wind tide have significant variation with longitude. (4) showed a complete reanalysis data over Langfang near space using the Langfang MF radar and MERRA (20 -100 km) on 2010 and 2013 in response to the zonal wind SSW events, while Fort and Collins (41 ~ N, 105 ~ W) response over the zonal wind of 2009 SSW events were compared. The results showed that there are zonal wind response to SSW, but different in detail, mainly is the inversion height region. The simulation results of SSW situation during field, the result shows that the use of SD-WACCM mode, during SSW, planetary wave 1 and wave 2 has a strong activity, in the mid latitude zonal mean zonal winds weaken the weak westerly. Affected by the planetary wave phase modulation, the same latitude zonal wind of SSW response with the longitude changes. Due to the planetary wave phase tilt westward with increasing height, resulting in changes in latitudes near space in different regions and different. (5) the SD-WACCM model of global atmospheric situation during SSW 2013, the mid latitude near space atmospheric zonal mean characteristics of the dynamic diagnostic analysis. The results showed that during SSW, planetary waves (PW1 and PW2), gravity waves (frontal gravity waves excited, excited convective gravity wave and gravity wave propagation), residual circulation have undergone significant changes, play a different role in the development of near space zonal wind. There is a direct relationship between the remaining ring flow and temperature anomalies this chapter reveals the physical mechanism caused by the mid latitude atmospheric changes.
【學(xué)位授予單位】:中國(guó)科學(xué)院國(guó)家空間科學(xué)中心
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P425
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田玉芳;呂達(dá)仁;;北京MST雷達(dá)探測(cè)中間層-低熱層觀測(cè)結(jié)果初步分析[J];地球物理學(xué)報(bào);2016年02期
2 郭文杰;胡雄;閆召愛;郭商勇;程永強(qiáng);楊鈞烽;;利用瑞利激光雷達(dá)觀測(cè)北京地區(qū)上平流層地形重力波活動(dòng)[J];地球物理學(xué)報(bào);2015年10期
3 劉偉軍;徐寄遙;袁椺;;北京地區(qū)上空OH轉(zhuǎn)動(dòng)溫度的季節(jié)性變化[J];地球物理學(xué)報(bào);2015年05期
4 萬衛(wèi)星;徐寄遙;;中國(guó)高層大氣與電離層耦合研究進(jìn)展[J];中國(guó)科學(xué):地球科學(xué);2014年09期
5 易穩(wěn);陳金松;馬春波;李娜;趙振維;;昆明全天空流星雷達(dá)觀測(cè)中高層大氣溫度[J];地球物理學(xué)報(bào);2014年08期
6 王英鑒;王詠梅;王后茂;;高層大氣測(cè)風(fēng)用地基F-P干涉儀的數(shù)值模擬[J];地球物理學(xué)報(bào);2014年06期
7 谷升陽;李陶;Alan Liu;Gary Swenson;Chester Gardner;Dennis Riggin;David Fritts;;Hawaii地區(qū)鈉激光雷達(dá)與流星雷達(dá)和中頻雷達(dá)同時(shí)觀測(cè)水平風(fēng)場(chǎng)的對(duì)比分析[J];量子電子學(xué)報(bào);2013年01期
8 胡雄;閆召愛;郭商勇;程永強(qiáng);龔建村;;鈉熒光多普勒激光雷達(dá)測(cè)量中間層頂區(qū)域大氣溫度[J];科學(xué)通報(bào);2011年03期
9 肖存英;胡雄;;平流層爆發(fā)性增溫期間大氣變化特性的COSMIC掩星觀測(cè)[J];空間科學(xué)學(xué)報(bào);2011年01期
10 閆召愛;胡雄;郭商勇;程永強(qiáng);吳小成;;鈉原子D_2線無多普勒飽和熒光光譜的測(cè)量[J];光學(xué)學(xué)報(bào);2010年04期
,本文編號(hào):1402181
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1402181.html