天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于MOST傳播模型的中國(guó)邊緣海近岸水域海嘯強(qiáng)度評(píng)估研究

發(fā)布時(shí)間:2018-01-07 19:05

  本文關(guān)鍵詞:基于MOST傳播模型的中國(guó)邊緣海近岸水域海嘯強(qiáng)度評(píng)估研究 出處:《中國(guó)海洋大學(xué)》2015年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: MOST傳播模型 海嘯波信號(hào)提取 全球海嘯傳播數(shù)據(jù)庫 中國(guó)邊緣海近岸水域海嘯振幅 長(zhǎng)期重現(xiàn)值


【摘要】:海嘯是造成人員傷亡和經(jīng)濟(jì)損失最嚴(yán)重的自然災(zāi)害之一。基于Method of Splitting Tsunami (MOST)數(shù)值模型的海嘯淹沒預(yù)報(bào)系統(tǒng)能夠模擬海嘯的產(chǎn)生、傳播和淹沒過程,實(shí)時(shí)地進(jìn)行海嘯的預(yù)報(bào)預(yù)警工作。多次歷史海嘯的實(shí)測(cè)值與數(shù)值模擬值的比較結(jié)果證明了該模型的有效性和準(zhǔn)確性。該預(yù)報(bào)系統(tǒng)整合了三個(gè)關(guān)鍵組分:海嘯的實(shí)時(shí)深海觀測(cè)、基于深海觀測(cè)和海嘯傳播數(shù)據(jù)庫的海嘯源反演、高精度淹沒模型計(jì)算爬坡。本文基于此模型研究了海嘯波信號(hào)波的實(shí)時(shí)提取、全球海嘯傳播數(shù)據(jù)庫的構(gòu)建及中國(guó)邊緣海近岸水域海嘯振幅強(qiáng)度評(píng)估三個(gè)問題。海嘯事件發(fā)生過程中,海嘯探測(cè)儀DART(?)記錄的海面高度信號(hào)中包含潮汐信號(hào)、海嘯波信號(hào)和背景噪聲,實(shí)時(shí)預(yù)報(bào)系統(tǒng)需要在最短的時(shí)間內(nèi)分離出海嘯波信號(hào)從而反演海嘯源,進(jìn)而數(shù)值模擬海嘯數(shù)值傳播及上岸過程。本文采用經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical Mode Decomposition, EMD)方法解決這個(gè)問題,此方法適于分解非線性非平穩(wěn)信號(hào)。首先基于經(jīng)典EMD方法提出了線性算子EMD (LO-EMD)算法,即在高階導(dǎo)數(shù)空間中給出本征模態(tài)函數(shù)(Intrinsic Mode Functions, IMFs)的定義并轉(zhuǎn)化為優(yōu)化問題,利用線性算子表示出IMFs。相比于經(jīng)典EMD方法,此方法在分辨率、模態(tài)混淆及抗噪性問題方面有所改進(jìn)。將LO-EMD方法應(yīng)用到從海面高度模擬信號(hào)分離海嘯波信號(hào)問題,相比調(diào)和分析等方法,此方法采用較短的數(shù)據(jù)序列就能夠達(dá)到較高的分解準(zhǔn)確度。分離得到的海嘯波信號(hào)與海嘯傳播數(shù)據(jù)庫中的海嘯源函數(shù)結(jié)合反演出海嘯源,從而為進(jìn)一步的海嘯上岸數(shù)值模擬提供初始和邊界條件。目前的海嘯傳播數(shù)據(jù)庫分別覆蓋太平洋、大西洋以及印度洋,模擬的海嘯傳播時(shí)間在24 h-36 h。本文基于MOST海嘯傳播模型,采用全球地形網(wǎng)格以及不同于構(gòu)建太平洋海嘯傳播數(shù)據(jù)庫時(shí)采用的邊界條件,提出全球海嘯傳播數(shù)據(jù)庫的構(gòu)建。通過比較一維、二維數(shù)值模型的解析解與數(shù)值解驗(yàn)證了邊界條件的有效性。以2011年3月11日發(fā)生的日本海嘯為實(shí)例,DART(?)實(shí)測(cè)值與采用數(shù)據(jù)庫計(jì)算得到的結(jié)果比較表明:計(jì)算網(wǎng)格的更新使得對(duì)于遠(yuǎn)離海嘯源的一些DART(?)站及驗(yàn)潮站處初始海嘯波數(shù)值計(jì)算結(jié)果有改善,邊界條件的改變對(duì)于提高后續(xù)波的模擬結(jié)果有影響。同時(shí)模擬結(jié)果驗(yàn)證了海嘯振幅和傳播速度在深海中的傳播是線性的;采用新邊界條件時(shí),MOST模型的數(shù)值耗散更少。收集Global CMT地震目錄中對(duì)中國(guó)沿海存在海嘯威脅的歷史地震,根據(jù)記錄的地震參數(shù)計(jì)算MOST模型的輸入?yún)?shù)。采用MOST模型模擬五次有實(shí)測(cè)海嘯記錄的歷史地震產(chǎn)生的海嘯,實(shí)測(cè)記錄與數(shù)值模擬結(jié)果的比較說明,采用歷史地震記錄計(jì)算的作為MOST模型的輸入?yún)?shù),并據(jù)此數(shù)值模擬歷史海嘯,該方法是可行性的。MOST模型與Boussinesq模型的比較結(jié)果確定了使用MOST模型模擬歷史地震引發(fā)的海嘯增水時(shí)在中國(guó)附近海域采用1 arc min的計(jì)算網(wǎng)格,并采用50 m水深處的海嘯振幅對(duì)中國(guó)邊緣海近岸水域海嘯振幅強(qiáng)度進(jìn)行評(píng)估。對(duì)中國(guó)邊緣海近岸水域海嘯振幅進(jìn)行統(tǒng)計(jì)分析并計(jì)算長(zhǎng)期重現(xiàn)值,給出長(zhǎng)期重現(xiàn)期下中國(guó)沿海容易遭受海嘯危害的海域。廣義Pareto分布(GPD)的閾值選擇方法驗(yàn)證了采用7級(jí)及以上的歷史地震作為研究對(duì)象是合理的。7級(jí)及以上歷史地震的發(fā)生頻次采用Poisson分布擬合,歷史地震矩震級(jí)和離岸海嘯振幅的一維概率分布分別采用Poisson-GPD和Poisson-Lognormal分布擬合。在假設(shè)2011年3月11日日本海嘯的重現(xiàn)期為500年的條件下,計(jì)算了中國(guó)邊緣海近岸水域海嘯振幅的長(zhǎng)期重現(xiàn)值。當(dāng)重現(xiàn)期為1000年時(shí),廣東省東北部海域、福建省西南部海域、臺(tái)灣除鄰接臺(tái)灣海峽的海域、浙江省東北部海域和上海市附近海域的離岸海嘯振幅超過20 cm;特別當(dāng)重現(xiàn)期為2500年時(shí),廣東省東北部海域、福建省西南部海域及臺(tái)灣高雄南部和東部海域的離岸海嘯振幅達(dá)到50 cm。采用Gumbel Copula函數(shù)構(gòu)造地震矩震級(jí)和中國(guó)邊緣海近岸水域海嘯振幅的聯(lián)合概率分布并計(jì)算聯(lián)合重現(xiàn)值。當(dāng)聯(lián)合重現(xiàn)期為1000年時(shí),海嘯振幅超過20 cm的海域在廣東省、福建省、臺(tái)灣、浙江省與上海市附近海域。
[Abstract]:Tsunami is one of the casualties and economic losses of the most serious natural disasters. Method of Splitting Tsunami (MOST) based on the numerical model of tsunami inundation forecasting system can simulate tsunami generation, propagation and inundation process, real-time prediction of the tsunami. And numerical value comparison results prove the validity of the model and the accuracy of multiple historical tsunami observations. The forecast system integrates three key components: real-time ocean observing tsunami, tsunami and tsunami propagation source inversion deep-sea Observation Database Based on high precision submerged climbing. Based on this model calculation model to study the real-time extraction of tsunami wave signal wave, a global tsunami propagation database construction and Chinese Marginal Sea coastal waters tsunami amplitude strength assessment three. During the tsunami, tsunami detectors (DART?) record of the sea Contains the surface height of tidal signal in the signal, the tsunami wave signal and background noise, the real-time forecasting system to isolate tsunami wave signal to inversion of tsunami source in the shortest time, and then the numerical simulation numerical tsunami propagation and landing process. In this paper using empirical mode decomposition (Empirical Mode, Decomposition, EMD) method to solve this problem, this method suitable for the decomposition of nonlinear and non-stationary signal. Based on the classical EMD method is proposed for the linear operator EMD (LO-EMD) algorithm, which is given in the derivative space the intrinsic mode function (Intrinsic Mode, Functions, IMFs) is defined and transformed into an optimization problem, using linear operator expressed IMFs. compared to the classical EMD method, this method in resolution of mode confusion and anti noise problems improved. The LO-EMD method is applied to the simulation of signal separation from sea level tsunami wave signal, compared to adjusted And the analysis method, this method uses short data sequences can achieve high accuracy. The source function decomposition of tsunami tsunami wave signal and tsunami propagation database isolated in combination with inversion of tsunami source, thus ashore for further numerical simulation of tsunami with initial and boundary conditions. The tsunami propagation database respectively. Covering the Atlantic and the Pacific Ocean, India ocean, the tsunami propagation time simulation at 24 h-36 h. based on the MOST tsunami propagation model, the global terrain grid and use different to the construction of the Pacific Tsunami propagation database when the boundary conditions, the construction of global tsunami propagation database. By comparing the one-dimensional analytical solutions of two-dimensional numerical model validation the boundary conditions and numerical tsunami occurred on March 11, 2011 in Japan. For example, DART (?) measured with the calculation data base Compared the results obtained: the grid update makes for some DART away from the tsunami source (?) station and tide station at the initial tsunami wave numerical results have improved, the effect of boundary conditions change to improve the simulation results. At the same time the subsequent wave simulation results verify the propagation of tsunami amplitude and velocity in the deep sea is linear; the new boundary conditions, the numerical dissipation is less. The MOST model of historical earthquakes on coastal China exist tsunami threat collection Global CMT earthquake catalog, parameters of MOST model according to the seismic parameters recorded. Using MOST model to simulate the five time history of earthquake tsunami recorded tsunami, comparison the simulation results illustrate the recording and numerical measurement, using historical earthquake record calculation as the input parameters of the MOST model, and based on the numerical simulation of historical tsunami, the method is available The comparison results of.MOST model and Boussinesq model of computing grid to determine the use of 1 arc min in the waters near the Chinese using MOST model to simulate historical earthquake triggered a tsunami surge, and the tsunami amplitude 50 m deep water to assess the China Marginal Sea coastal waters tsunami amplitude. Statistical analysis was done on the edge of China the Sea coastal waters tsunami amplitude and calculate the long-term return value, given a long-term return period under the China coastal waters. The tsunami hazard to the generalized Pareto distribution (GPD) threshold selection method is verified by the 7 level and above the historical earthquake as the research object is.7 reasonable and above historical earthquake occurrence frequency by Poisson distribution fitting one dimensional probability distribution of historical earthquakes, moment magnitude and offshore tsunami amplitude respectively by Poisson-GPD and Poisson-Lognormal. On the assumption that the distribution of March 2011 11 Japan tsunami return period of 500 years under the condition of long-term value of Chinese Marginal Sea coastal waters tsunami amplitude re calculated. When the return period of 1000, in the northeast of Guangdong Province, Fujian Province, southwest area, adjacent to the Taiwan Strait in Taiwan waters offshore tsunami amplitude near the sea in Zhejiang province north of the east the sea and the city of Shanghai is more than 20 cm; especially when the return period of 2500, the northeast area of Guangdong Province, offshore tsunami amplitude waters southwest of Fujian and Taiwan in southern Kaohsiung and the Eastern Sea reached 50 cm. using the Gumbel Copula function to construct seismic moment magnitude and Chinese Marginal Sea coastal waters tsunami amplitude of the joint probability distribution and calculate the joint return value. When the joint return period of 1000, tsunami amplitude is more than 20 cm area in Guangdong Province, Fujian Province, Taiwan, near the sea area of Zhejiang province and Shanghai city.

【學(xué)位授予單位】:中國(guó)海洋大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P731.25

【相似文獻(xiàn)】

相關(guān)博士學(xué)位論文 前1條

1 王南南;基于MOST傳播模型的中國(guó)邊緣海近岸水域海嘯強(qiáng)度評(píng)估研究[D];中國(guó)海洋大學(xué);2015年

相關(guān)碩士學(xué)位論文 前9條

1 何丹丹;基于MOST平臺(tái)的語音接口[D];吉林大學(xué);2009年

2 賀醒然;MOST網(wǎng)絡(luò)動(dòng)態(tài)電源管理策略研究與實(shí)現(xiàn)[D];吉林大學(xué);2012年

3 康夢(mèng)博;MOST攝像頭和人臉識(shí)別節(jié)點(diǎn)的設(shè)計(jì)與實(shí)現(xiàn)[D];吉林大學(xué);2015年

4 薛靜;車載藍(lán)牙/MOST網(wǎng)關(guān)的設(shè)計(jì)與實(shí)現(xiàn)[D];吉林大學(xué);2011年

5 朱先宇;短溝道MOST溫度特性的建模[D];安徽大學(xué);2002年

6 倉(cāng)晨陽;車載MOST網(wǎng)絡(luò)異步數(shù)據(jù)通信的研究與應(yīng)用[D];吉林大學(xué);2013年

7 劉瑞凱;MOST網(wǎng)絡(luò)電源管理設(shè)計(jì)與實(shí)現(xiàn)[D];吉林大學(xué);2012年

8 許冰;基于語音接口的MOST網(wǎng)絡(luò)設(shè)備控制[D];吉林大學(xué);2008年

9 陳吉龍;MOST網(wǎng)絡(luò)和互聯(lián)網(wǎng)絡(luò)網(wǎng)關(guān)的設(shè)計(jì)與實(shí)現(xiàn)[D];吉林大學(xué);2014年

,

本文編號(hào):1393838

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1393838.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0b7cb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com