星載測雨雷達(dá)和測云雷達(dá)探測的夏季高原云和降水特征研究
本文關(guān)鍵詞:星載測雨雷達(dá)和測云雷達(dá)探測的夏季高原云和降水特征研究 出處:《中國科學(xué)技術(shù)大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 青藏高原 云 降水 星載測雨雷達(dá) 星載測云雷達(dá) 復(fù)雜地形 氣候特征
【摘要】:云和降水在氣候變化中具有重要意義,使用衛(wèi)星多儀器多通道聯(lián)合觀測云和降水已經(jīng)成為當(dāng)前大氣遙感和氣候變化領(lǐng)域的研究熱點(diǎn)。青藏高原通過熱-動力作用,對區(qū)域氣候變化具有極大影響,被稱為全球氣候變化的“驅(qū)動機(jī)與放大器”,研究高原云和降水具有重要意義。同時(shí),不同類型的云和降水形成的熱-動力過程和微物理過程不同,因此,針對青藏高原不同類型的云和降水特征進(jìn)行研究,可以更好地理解高原云和降水形成的熱-動力和微物理過程,為模式提供參考依據(jù),提高模式預(yù)報(bào)的準(zhǔn)確性。本文利用熱帶測雨衛(wèi)星(TRMM)搭載的測雨雷達(dá)(PR)和可見光/紅外掃描儀(VIRS) 1998-2012年的融合資料,研究了青藏高原夏季不同類型降水的水平分布、光譜信號、垂直結(jié)構(gòu)和日變化特征,以及各類型降水之間的關(guān)系。同時(shí),借助CloudSat-CALIPSO的云層分類,在氣候尺度上考察不同云層類型云量的分布、垂直結(jié)構(gòu)、微物理特征和云輻射等屬性上的定量差異,并分析了相應(yīng)的大氣環(huán)境特征以及白天和夜晚云分布的不同。論文還研究了不同地形下降水的水平分布、光譜信號、垂直結(jié)構(gòu)、大氣環(huán)流和日變化特征,揭示了地形對降水的影響。論文主要取得的結(jié)論如下:1.深厚降水和淺薄降水的氣候特征夏季高原降水主要以深厚弱對流降水為主(67.8%),淺薄降水次之(26.4%),深厚強(qiáng)對流降水出現(xiàn)最少(5.8%),相應(yīng)的條件降水強(qiáng)度分別為1.3,1.4和9.5mm/h,對高原總降水的貢獻(xiàn)分別達(dá)18.5%,51.2%和30.3%。不同云頂紅外輻射溫度的平均降水廓線表明,深厚降水從回波頂高度至近地面高度均經(jīng)歷先增大,后減小的過程,而淺薄降水只有增大過程。深厚強(qiáng)對流和深厚弱對流降水頻次峰值均出現(xiàn)在16:00LT(當(dāng)?shù)貢r(shí),下同),降水強(qiáng)度峰值分別出現(xiàn)在18:00LT和13:00LT,其中深厚強(qiáng)對流降水強(qiáng)度在00:00 LT還出現(xiàn)次峰值。淺薄降水的降水頻次及強(qiáng)度峰值均出現(xiàn)在20:00 LT,呈現(xiàn)夜雨特點(diǎn)。深厚降水和淺薄降水云頂紅外輻射溫度日變化特征相似,最低值均出現(xiàn)在19:00 LT。研究還表明,深厚強(qiáng)對流和深厚弱對流降水具有明顯的東移特征,其中深厚弱對流降水的東移特征更為明顯,而淺薄降水無明顯的東傳特征。2.不同相態(tài)降水云的氣候特征以云頂相態(tài)定義的青藏高原降水類型統(tǒng)計(jì)表明,夏季高原主體降水以冰相降水為主(43.01%),其次是冰水混合相1型降水(38.85%)和冰水混合相2型降水(17.79%),水相降水最少(0.35%)。各類型降水強(qiáng)度均較小,主要集中在0.5-2mm/h范圍內(nèi)?臻g分布表明,冰相和冰水混合相降水的頻次和強(qiáng)度均自高原西部向東部增加,而其降水回波頂高度自高原西、中部向東部降低。根據(jù)降水垂直廓線在不同高度上相對的穩(wěn)定斜率,各云頂相態(tài)云的降水垂直結(jié)構(gòu)均可以分為兩層:第一層從回波頂高度至近地面7.25 km高度,回波強(qiáng)度隨著高度的降低不斷增強(qiáng);第二層從7.25 km高度至近地面高度,回波強(qiáng)度隨著高度的降低逐漸減弱。降水日循環(huán)曲線表明,在高原西部,冰相降水和混合相降水頻次峰值均出現(xiàn)在16:00 LT附近,降水發(fā)展過程不顯著;在高原中部和東部,冰水混合2型、冰水混合1型和冰相降水頻次的位相依次向后推移2小時(shí),表明這些地區(qū)降水的發(fā)展過程顯著。且90°E以東地區(qū),各類型降水位相自西向東依次向后推移,表明了對流系統(tǒng)自西向東傳播的過程。3.云結(jié)構(gòu)氣候特征夏季高原云覆蓋率高達(dá)86.79%,主要以單層云為主(56.86%),雙層云次之(24.47%),隨著云層數(shù)增加,云所占比例遞減。單層云相對高值區(qū)集中在高原北部,多層云整體呈東南向西北遞減的分布形式。云頂最大高度約為17km,云概率在7.5 km高度達(dá)到最大。單層云的厚度大于多層云,且上層云的值一般小于下層云。單層云的各微物理量特征值(粒子數(shù)密度、云水含量和粒子有效半徑)大于多層云,上層云的值一般小于下層云,且各微物理量值均隨雷達(dá)反射率呈指數(shù)性增長。云的短(長)波輻射為加熱(冷卻)效應(yīng),單層云的冷卻(加熱)效應(yīng)大于(小于)多層云。高原降水以液態(tài)降水為主,其次為固態(tài)降水,毛毛雨降水最少,且毛毛雨主要發(fā)生在多層云降水中。大氣垂直廓線表明,中低層溫度越高,比濕越大,氣壓越高越有助于多層云的形成。云分布晝夜差異顯著,單層云白天所占的比例(62.99%)高于夜晚(51.00%),而雙層云和三層云白天的比例均低于夜晚,表明多層云更易發(fā)生在夜晚,這與夜晚近地面比濕大和氣壓高有關(guān)。液態(tài)降水白天所占比例大于夜晚,而固態(tài)降水和毛毛雨則相反。4.喜馬拉雅山陡峭地形上降水特征本文利用1998-2012年5-8月的TRMM PR和VIRS融合數(shù)據(jù)研究了喜馬拉雅山陡峭地形及其周邊區(qū)域,包括恒河平原(flat Gangetic Plains-FGP)、喜馬拉雅山山腳(foothills of Himalayas-FHH)、喜馬拉雅山陡坡(steep slope of south Himalayas -SSSH)和喜馬拉雅山-高原抬地(Himalayas-Tibetan Plateau tableland-HTPT)的降水特征,并結(jié)合ECMWF再分析資料,研究了相應(yīng)區(qū)域的大氣環(huán)流特征。研究結(jié)果表明,降水頻次從FGP經(jīng)FHH顯著增加,在SSSH的2.5 km高度處達(dá)到最大值,然后隨地形的繼續(xù)增加單調(diào)減小,最小值出現(xiàn)在HTPT。降水強(qiáng)度在FGP、FHH、SSSH和HTPT的值依次為4mm/h,5.5mm/h,2~4mm/h和低于2mm/h。20dBZ回波頂高度在FGP最高,達(dá)16km,然后依次為FHH(15.5km), SSSH (14 km)和HTPT (14 km)。同時(shí),地形對降水云的云相態(tài)特征影響也較大。在FGP、FHH和HTPT,60%以上的降水云頂是由冰粒子組成,然而在SSSH,70%以上的降水云頂是由冰水混合粒子組成。研究結(jié)果還表明在SSSH產(chǎn)生的強(qiáng)降水頻次和喜馬拉雅山地形抬升引起的強(qiáng)烈上升運(yùn)動密切相關(guān)。暖濕的洋面氣流在FHH被SSSH阻擋,在低層產(chǎn)生輻合,致使最強(qiáng)降水強(qiáng)度發(fā)生在FHH。代替地形高度,文中定義的地形指數(shù)與降水參量有顯著的線性關(guān)系,表明地形指數(shù)在復(fù)雜地形降水的分布中具有很好的指示意義。降水日變化空間分布呈現(xiàn)顯著的區(qū)域性差異,HTPT、FGP降水頻次峰值位于午后,SSSH降水頻次有兩個(gè)峰值,分別出現(xiàn)在午后和傍晚,FHH降水頻次峰值位于午夜至凌晨期間。大氣環(huán)流具有明顯的日變化特征,且與降水的分布有很好的對應(yīng)關(guān)系,垂直運(yùn)動向上,低層輻合,高層輻散的距平環(huán)流場有助于降水的產(chǎn)生。
[Abstract]:Cloud and precipitation plays an important role in climate change, the use of satellite multi instrument multichannel joint observations of clouds and precipitation has become a hotspot of current remote sensing of atmosphere and climate change. The Qinghai Tibet Plateau by thermal power, has great influence on the regional climate change, known as the "driver and amplifier" with global climate change. Significance of the research on the plateau of clouds and precipitation. Meanwhile, different types of cloud and precipitation of thermo dynamical and microphysical processes are different, therefore, to study the characteristics of different types of clouds and precipitation of the Tibetan Plateau, you can better understand the plateau cloud and precipitation thermal dynamic and microphysical processes, and provide reference for improving mode. The accuracy of model prediction. By using TRMM Precipitation Radar (TRMM) with (PR) and visible / infrared scanner (VIRS) in 1998-2012 Data fusion, horizontal distribution, on the Tibetan Plateau in summer precipitation in different types of spectrum signal, the characteristics of vertical structure and diurnal variation, and the relationship between various types of precipitation. At the same time, with the help of cloud classification CloudSat-CALIPSO, effects of different types of cloud distribution, clouds in climate scale vertical structure, micro quantitative differences in physical characteristics and cloud radiation other attributes, and analyzes the features of atmospheric environment and the corresponding day and night cloud distribution is different. The paper also studies the distribution of precipitation, the level of different terrain spectrum signal, the vertical structure of the atmospheric circulation characteristics and diurnal variation, reveals the influence of terrain on precipitation. The main conclusions are as follows: 1. deep precipitation and shallow precipitation climatic characteristics of summer precipitation mainly in the deep weak convective precipitation (67.8%), (26.4%) the precipitation of shallow, deep convective precipitation is the most Less (5.8%), the conditions of the corresponding precipitation intensity were 1.3,1.4 and 9.5mm/h, on the plateau of the total precipitation contribution reached 18.5%, the average precipitation profiles and 51.2% different 30.3%. cloud infrared radiation temperature showed that deep precipitation from the echo top height to the ground height first increased, then decreased, and shallow only increase the precipitation process. Deep convection and deep weak convection precipitation frequency peak appeared at 16:00LT (local time, the same below), the precipitation intensity peaks at 18:00LT and 13:00LT, in which deep strong convective precipitation intensity in the 00:00 LT also appeared the first peak. Shallow precipitation frequency and intensity of precipitation peak appeared at 20:00 LT. The rain has deep and shallow precipitation characteristics. Similar characteristics of infrared radiation temperature diurnal variation of precipitation in Genting, the lowest value appeared in the 19:00 LT. study also showed that deep convection and strong deep weak convection Precipitation has obvious characteristics of deep eastward, the weak eastward characteristics of convective precipitation is more obvious, and the shallow precipitation type Tibetan Plateau eastward propagation characteristics of.2. precipitation statistics without obvious different phase precipitation characteristics of cloud to cloud phase definition indicates that the main water drop to plateau summer ice phase precipitation (43.01%). Is the second phase precipitation ice water mixed type 1 (38.85%) and mixed ice water phase precipitation type 2 (17.79%), water (0.35%). The least rainfall type rainfall intensity are small, mainly concentrated in the range of 0.5-2mm/h. The spatial distribution shows that the ice and ice water mixed phase precipitation frequency and intensity from the Western to the eastern plateau increased but, the precipitation echo top height from the west to the East Central Primary and lower slope stability. The relative height according to the rainfall in different vertical profiles, the cloud phase precipitation cloud vertical structure can be divided into two layers: the first From the height of echo top layer near the ground surface to the height of 7.25 km, the echo intensity with the decrease of height increasing; second layers from 7.25 km to near ground level, the echo intensity weakened gradually with the decrease of height. The diurnal cycle of precipitation in the western plateau, curve shows that the ice phase precipitation and mixed phase precipitation frequency peak appeared at 16:00 near LT, no significant precipitation in the process of development; in the middle and East, mixed type 2, type 1 and mixed phase ice ice phase precipitation frequency in turn back over 2 hours, showed that the development of these precipitation significantly. And 90 degrees east of E, various types of precipitation phase from west to East over backwards that shows that the convective system spread from west to east of the.3. cloud structure of climatic characteristics of summer plateau cloud coverage rate up to 86.79%, mainly in the single (56.86%), mainly stratus cloud layer times (24.47%), with the increase in the number of clouds Plus, the proportion of cloud decreasing. Single cloud relatively high value area concentrated in the northern plateau, the overall distribution is cloud southeast to northwest. The maximum height of the cloud is about 17km, the probability of cloud at 7.5 km height. The maximum monolayer thickness is greater than the multi stratus cloud, and the cloud is generally less than the lower level the micro physical characteristics of single-layer clouds value (particle density, water content and particle effective radius) is greater than the clouds, cloud is generally less than the lower level, and the micro physical values with the radar reflectivity exponentially. The cloud short (long) wave radiation for heating (cooling) effect a single cloud, cooling (heating) effect is greater than (less than) multilayer clouds. Precipitation in liquid precipitation, followed by solid precipitation, precipitation and drizzle at least, drizzle occurs mainly in water drop in the cloud. The atmospheric vertical profiles show that the lower layer temperature is high, humidity The greater the higher the pressure helps to form a multi stratus cloud distribution. Significant differences between day and night, single day cloud proportion (62.99%) higher than the night (51%), and three day double clouds and clouds were lower than that at night, clouds are more likely to happen in the night, the night near the ground and the high high humidity and air pressure. The proportion of liquid precipitation during the day than at night, while the solid precipitation and drizzle in Himalaya Range.4. steep terrain characteristics of precipitation by using 1998-2012 TRMM PR and 5-8 VIRS on the steep terrain of Himalaya Range and its surrounding areas of data fusion, including Ganges RIver plain (flat Gangetic Plains-FGP), Himalaya Range (at the foot of the mountain foothills of Himalayas-FHH (steep slope), Himalaya Range of South Himalayas slope -SSSH) and Himalaya Range (Himalayas-Tibetan Plateau tableland-HTPT plateau elevation drop) Water features, combined with the ECMWF reanalysis data, the atmospheric circulation characteristics of the corresponding region. The results show that the precipitation frequency from FGP by FHH significantly increased in SSSH at the height of 2.5 km reached the maximum value, and then continue to decrease monotonically increase with the terrain, the minimum occurred in HTPT. precipitation intensity in FGP, FHH. The SSSH and HTPT value were 4mm/h, 5.5mm/h, 2 ~ 4mm/h and 2mm/h.20dBZ is lower than the height of echo top in FGP the highest, up to 16km, followed by FHH (15.5km), SSSH (14 km) and HTPT (14 km). At the same time, terrain on Precipitation Cloud cloud phase characteristics have greater influence in FGP. FHH, and HTPT, more than 60% of the precipitation cloud is composed of ice particles, but in SSSH, more than 70% of the cloud precipitation is composed of ice water mixed particles. The results also show that the strong ascending motion in SSSH caused by the generation of intense precipitation frequency and Himalaya Range terrain elevation is closely related to the warm. The ocean is blocked in the wet air SSSH FHH, produced the convergence in the lower layer, resulting in the strongest precipitation intensity instead of terrain height in FHH., in this paper the definition of the topographic index and precipitation parameters had significant linear relationship, show that the topographic index is a good indication of the distribution of precipitation in complex terrain in the spatial distribution of precipitation in a day. Showed regional differences, significant HTPT, FGP precipitation frequency peak in the afternoon, SSSH precipitation frequency has two peaks, respectively, in the afternoon and evening, during the FHH precipitation frequency peak at midnight to midnight. The atmospheric circulation has obvious diurnal variation, and have a good relationship with the distribution of rainfall, vertical motion upward, lower level convergence, upper level divergence from the bulk flow flat ring contribute to the precipitation.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:P412.25
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 竇賢康;立體雷達(dá)方法在星載測雨雷達(dá)上的應(yīng)用[J];氣象學(xué)報(bào);1999年03期
2 葛潤生;;測雨雷達(dá)中的新技術(shù)[J];氣象科技資料;1975年10期
3 關(guān)佾;;采用水動力學(xué)方法結(jié)合測雨雷達(dá)當(dāng)時(shí)予報(bào)小流域洪水[J];內(nèi)蒙古農(nóng)牧學(xué)院學(xué)報(bào);1987年02期
4 張悅?cè)?梁用昌;測雨雷達(dá)配合人工降雨作業(yè)初探[J];廣西氣象;1992年01期
5 陳志信;711測雨雷達(dá)常見故障及排除方法[J];陜西氣象;1994年04期
6 萬李玲;711測雨雷達(dá)顯示器干擾的排除與分析[J];四川氣象;1996年01期
7 田中玉;從宜賓測雨雷達(dá)檢修看自備力量大修711雷達(dá)的優(yōu)越性[J];四川氣象;1996年02期
8 竇賢康,劉萬栓,P.Amayenc,劉錦麗;不均勻性束內(nèi)充塞效應(yīng)對星載測雨雷達(dá)反演算法的影響[J];大氣科學(xué);2000年04期
9 張培昌;711測雨雷達(dá)探測及攝取回波資料的一些考慮[J];氣象;1979年01期
10 顧松山 ,朱清坤;測雨雷達(dá)的校準(zhǔn)[J];南京氣象學(xué)院學(xué)報(bào);1979年02期
相關(guān)會議論文 前5條
1 傅云飛;張愛民;劉勇;鄭媛媛;胡運(yùn)芳;馮沙;曹愛琴;;基于星載測雨雷達(dá)探測的亞洲對流和層云降水季尺度特征分析[A];中國氣象學(xué)會2008年年會氣候變化分會場論文集[C];2008年
2 商建;楊汝良;;TRMM衛(wèi)星測雨雷達(dá)的數(shù)據(jù)處理及臺風(fēng)三維數(shù)據(jù)分析[A];“2010年北京氣象學(xué)會中青年優(yōu)秀論文評選”學(xué)術(shù)研討會論文集[C];2011年
3 傅云飛;劉鵬;曹愛琴;馮沙;劉顯通;;熱帶測雨衛(wèi)星測雨雷達(dá)探測的亞洲夏季積雨云云砧[A];中國氣象學(xué)會2008年年會衛(wèi)星遙感應(yīng)用技術(shù)與處理方法分會場論文集[C];2008年
4 傅云飛;劉鵬;曹愛琴;馮沙;劉顯通;李銳;劉奇;王雨;;熱帶測雨衛(wèi)星測雨雷達(dá)探測的亞洲夏季積雨云云砧[A];2009第五屆蘇皖兩省大氣探測、環(huán)境遙感與電子技術(shù)學(xué)術(shù)研討會專輯[C];2009年
5 劉鵬;傅云飛;;利用星載測雨雷達(dá)探測結(jié)果對夏季中國南方對流和層云降水氣候特征的分析[A];第27屆中國氣象學(xué)會年會大氣物理學(xué)與大氣環(huán)境分會場論文集[C];2010年
相關(guān)重要報(bào)紙文章 前2條
1 吳紅梅;探訪神奇“測雨雷達(dá)”[N];新華日報(bào);2003年
2 中信證券研究部 張兵;G四創(chuàng) 雷達(dá)核心業(yè)務(wù)促增長[N];中國證券報(bào);2006年
相關(guān)博士學(xué)位論文 前1條
1 潘曉;星載測雨雷達(dá)和測云雷達(dá)探測的夏季高原云和降水特征研究[D];中國科學(xué)技術(shù)大學(xué);2016年
,本文編號:1373251
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1373251.html