時(shí)間域航空電磁系統(tǒng)仿真與關(guān)鍵技術(shù)研究
本文關(guān)鍵詞:時(shí)間域航空電磁系統(tǒng)仿真與關(guān)鍵技術(shù)研究 出處:《吉林大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 時(shí)間域 航空電磁法 全時(shí)算法 矢量有限元 任意各向異性 姿態(tài)效應(yīng)
【摘要】:航空電磁法(Airborne Electromagnetic Method,簡稱AEM)是一種感應(yīng)類電磁勘探方法。由于采用移動(dòng)平臺(tái),較傳統(tǒng)地面電磁法具有方便、快速、無需地面人員接近等顯著優(yōu)點(diǎn),適合復(fù)雜地形條件,特別適合在無人區(qū)(高山、沙漠、沼澤、湖泊、森林覆蓋等)進(jìn)行大面積油氣、礦產(chǎn)、地下水和地?zé)豳Y源及環(huán)境與工程勘查。近年來,時(shí)間域航空電磁法因其分辨率高和勘探深度大等優(yōu)點(diǎn)已成為電磁法勘探研究的熱點(diǎn)。目前時(shí)間域航空電磁數(shù)據(jù)處理的一維成像和反演方法已十分成熟,但是其只能處理off-time段的數(shù)據(jù),無法解譯信息豐富的on-time段數(shù)據(jù),而且基于一維模型的成像或反演無法準(zhǔn)確的反映地下三維目標(biāo)體信息。此外,由于實(shí)際地層經(jīng)常呈現(xiàn)出各向異性特征,如用各向同性模型來解釋各向異性地區(qū)測(cè)得的時(shí)間域航空電磁資料會(huì)產(chǎn)生較大偏差。因此,為了提高時(shí)間域航空電磁數(shù)據(jù)的處理水平,本文開展各向異性介質(zhì)中三維時(shí)間域航空電磁響應(yīng)仿真研究,并對(duì)時(shí)間域航空電磁法幾個(gè)關(guān)鍵技術(shù)進(jìn)行分析。本文首先開展一維時(shí)間域航空電磁全時(shí)響應(yīng)仿真技術(shù)研究。利用快速漢克爾積分?jǐn)?shù)值濾波算法實(shí)現(xiàn)垂直磁偶極子源(Vertical Magnetic Dipole,簡稱VMD)的頻率域全空間電磁場(chǎng)各分量響應(yīng)計(jì)算,通過快速傅里葉變換將頻率域電磁響應(yīng)轉(zhuǎn)換到時(shí)間域,得到時(shí)間域全空間電磁場(chǎng)響應(yīng);鑒于時(shí)間域脈沖響應(yīng)早期的不穩(wěn)定性,提出利用階躍波與實(shí)際發(fā)射波形進(jìn)行褶積的計(jì)算方法,實(shí)現(xiàn)任意發(fā)射波形時(shí)間域電磁場(chǎng)全時(shí)響應(yīng)模擬。通過理論計(jì)算表明,本算法計(jì)算精確、穩(wěn)定,很好地展現(xiàn)出磁場(chǎng)B與磁感應(yīng)d B/dt的一致性,為研究復(fù)雜三維地電模型的全時(shí)電磁響應(yīng)奠定良好的基礎(chǔ)。本文研究任意各向異性的三維時(shí)間域航空電磁仿真技術(shù)。通過歐拉旋轉(zhuǎn)得到任意各向異性介質(zhì)的電導(dǎo)率張量,并利用廣義變分原理推導(dǎo)出任意各向異性介質(zhì)的頻率域航空電磁二次場(chǎng)控制方程;采用六面體對(duì)求解區(qū)域進(jìn)行離散,并用矢量線性插值基函數(shù)進(jìn)行有限單元分析,實(shí)現(xiàn)對(duì)控制方程的離散;將離散單元進(jìn)行總體合成,形成大型稀疏線性方程組,并采用高性能MUMPS直接求解器對(duì)方程組進(jìn)行求解;最后采用時(shí)-頻轉(zhuǎn)換計(jì)算方法和褶積算法實(shí)現(xiàn)任意波形的三維時(shí)間域航空電磁各向異性正演模擬。通過與解析解對(duì)比和典型各向同性三維介質(zhì)的模擬,驗(yàn)證算法的準(zhǔn)確性和可行性。同時(shí),本文還重點(diǎn)分析任意各向異性對(duì)三維時(shí)間域航空電磁法的影響特征。本文對(duì)時(shí)間域航空電磁法中一些關(guān)鍵技術(shù)進(jìn)行了探討。首先對(duì)不同發(fā)射波形(半正弦波、梯形波、三角波、方波、多波)的三維時(shí)間域航空電磁法全時(shí)響應(yīng)進(jìn)行數(shù)值分析,比較各單一波形在斷電后的響應(yīng)情況,并闡明多波在淺層地表的勘探效果;同時(shí)給出兩種基頻下不同發(fā)射裝置各單一波形不同場(chǎng)分量的勘探效果。其次,研究飛行高度對(duì)時(shí)間域航空電磁響應(yīng)的影響,分析不同高度對(duì)理論數(shù)據(jù)產(chǎn)生的誤差;并對(duì)樹冠和落葉層下的均勻半空間模型及異常體模型進(jìn)行數(shù)值分析。最后在均勻半空間模型中,對(duì)發(fā)射和接收裝置任意姿態(tài)變化的時(shí)間域航空電磁全時(shí)響應(yīng)進(jìn)行數(shù)值分析。結(jié)果顯示,在航空電磁實(shí)際勘探中,為提高勘探效果,應(yīng)合理選擇波形及設(shè)定測(cè)量參數(shù),盡可能采用多波發(fā)射實(shí)現(xiàn)全時(shí)采樣,并精確記錄發(fā)射和接收線圈的高程及姿態(tài)變化。本文的研究成果可為時(shí)間域航空電磁法的系統(tǒng)研制或航空電磁觀測(cè)參數(shù)設(shè)計(jì)及數(shù)據(jù)反演提供參考和依據(jù),同時(shí)能夠提高時(shí)間域航空電磁數(shù)據(jù)的解釋水平,具有一定的理論和實(shí)際意義。
[Abstract]:Airborne electromagnetic method (Airborne Electromagnetic Method, referred to as AEM) is a kind of induction type electromagnetic exploration method. Due to the use of mobile platform, compared with the traditional ground electromagnetic method has the advantages of convenient, fast, no significant advantage of near ground personnel, suitable for complex terrain, especially in uninhabited areas (mountains, deserts, swamps, lakes, forest cover) a large area of oil and gas, mineral resources, groundwater and geothermal resources and environment and engineering exploration. In recent years, the time domain airborne electromagnetic method has become a research hotspot of electromagnetic exploration because of its advantages of high resolution and great exploration depth. The time domain airborne electromagnetic data processing of one-dimensional imaging and inversion methods have been very mature, but it can only deal with off-time data, cannot decipher the abundant information of on-time data, and the one-dimensional model inversion based on imaging or can not accurately reflect the underground three-dimensional target The body of information. In addition, due to the actual formation often exhibit anisotropic characteristics, such as the use of isotropic model to explain the time domain airborne electromagnetic data measured in anisotropic regions will have great errors. Therefore, in order to improve the level of processing in time domain airborne electromagnetic data, this paper carried out in anisotropic medium three-dimensional time domain simulation research on the response of aviation the electromagnetic, and several key technologies of airborne electromagnetic method in time domain analysis. This paper studies the response of the whole simulation technology of one-dimensional time domain airborne electromagnetic. Using Hankel integral numerical filtering algorithm to realize the vertical magnetic dipole source (Vertical Magnetic Dipole, referred to as VMD) to calculate the response of the frequency domain space electromagnetic field, through fast the Fourier transform frequency domain electromagnetic response to the time domain, the time domain response in whole space electromagnetic field; in view of the time domain pulse The early response of instability, the step wave and the actual waveform calculation methods of convolution, arbitrary waveform of time domain electromagnetic full response simulation. Through theoretical calculations show that the algorithm is accurate, stable, good to show consistency of the magnetic field B and magnetic induction D B/dt, research the complex three-dimensional geoelectric model of the entire electromagnetic response to lay a good foundation. This paper studies arbitrary anisotropic 3D time domain airborne electromagnetic simulation technology. The conductivity tensor obtained Euler rotation in arbitrary anisotropic medium, and generalized variational principle are derived for arbitrary anisotropic medium frequency domain airborne electromagnetic field control equation by two times; hexahedral discrete domain, and finite element analysis with vector linear interpolation function, the realization of discrete control equations of the discrete unit in total; The synthesis, the formation of large sparse linear equations, and the use of high performance MUMPS direct solver to solve the equations; finally using time-frequency transform calculation method and realization algorithm of arbitrary waveform fold product of 3D time domain airborne electromagnetic anisotropic modeling. Through simulation and analytical methods and typical three-dimensional isotropic medium the accuracy, and verify the feasibility of the algorithm. At the same time, this paper also focuses on the analysis of arbitrary anisotropic effect on 3D time domain airborne electromagnetic characteristics. This paper discusses some key technologies of time domain airborne electromagnetic method. Firstly, different waveform (half sine wave, trapezoidal wave, triangle wave, square wave, wave) the 3D time domain airborne electromagnetic method response numerical analysis, the response in power after the comparison of each single waveform, and clarify the multiwave in shallow surface exploration results are given at the same time; Two kinds of fundamental frequency under different emission device of the single waveform of different component of the exploration effect. Secondly, the research on influence of flight height time domain airborne electromagnetic response, error analysis of different height of theoretical data; and the homogeneous half space model and canopy under litter and abnormal body model by numerical analysis. Finally, in uniform half space model, the time domain airborne electromagnetic transmitting and receiving device arbitrary attitude change in full response by numerical analysis. The results showed that in the actual airborne electromagnetic exploration, in order to improve the exploration effect, should be a reasonable choice of the waveform and setting of measurement parameters, as far as possible the use of multiwave emission to achieve full sampling, and accurate records and emission the receiving coil height and posture change. The results of this study can provide for system development or airborne electromagnetic observation parameter design and data inversion of time domain airborne electromagnetic method At the same time, it can improve the interpretation level of the time domain aero electromagnetic data, which has some theoretical and practical significance.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P631.326
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;脈沖式航空電磁系統(tǒng)研制簡報(bào)[J];地質(zhì)與勘探;1978年02期
2 李軍峰;劉凱飛;劉瑩瑩;吳珊;;頻率域航空電磁系統(tǒng)一次磁場(chǎng)自動(dòng)補(bǔ)償技術(shù)[J];物探與化探;2009年05期
3 ;我國首部吊艙式時(shí)間域航空電磁系統(tǒng)研制成功[J];地質(zhì)裝備;2012年03期
4 武瑩;余小東;成偉偉;;兩種時(shí)間域航空電磁系統(tǒng)響應(yīng)曲線對(duì)比分析[J];工程地球物理學(xué)報(bào);2013年06期
5 S.H.沃德;;航空電磁系統(tǒng)的設(shè)計(jì)[J];物探與化探;1973年01期
6 S.H.沃德;;航空電磁系統(tǒng)測(cè)量資料的解釋[J];物探與化探;1973年01期
7 鄂國慶;徐英哲;李文杰;;固定翼時(shí)間域航空電磁系統(tǒng)的飛機(jī)選型問題[J];物探與化探;2012年04期
8 R.H.派姆伯頓;;五十年代西方航空電磁探礦技術(shù)發(fā)展評(píng)述[J];物探與化探;1973年01期
9 王琦;林君;于生寶;李冰冰;朱凱光;;固定翼航空電磁系統(tǒng)的線圈姿態(tài)及吊艙擺動(dòng)影響研究與校正[J];地球物理學(xué)報(bào);2013年11期
10 P.胡德;;1965—1970年西方航空電磁探礦技術(shù)的發(fā)展[J];物探與化探;1973年01期
相關(guān)重要報(bào)紙文章 前2條
1 本報(bào)記者 王少勇;深部探礦有了空中利器[N];中國國土資源報(bào);2012年
2 于德福 王中義 宋英霞;打造中國自主的航空電磁測(cè)量系統(tǒng)[N];中國國土資源報(bào);2011年
相關(guān)博士學(xué)位論文 前2條
1 黃威;時(shí)間域航空電磁系統(tǒng)仿真與關(guān)鍵技術(shù)研究[D];吉林大學(xué);2016年
2 李軍峰;固定翼頻率域航空電磁系統(tǒng)測(cè)量技術(shù)研究[D];中國地質(zhì)大學(xué)(北京);2010年
相關(guān)碩士學(xué)位論文 前2條
1 徐鵬;徑向基神經(jīng)網(wǎng)絡(luò)的時(shí)域航空電磁系統(tǒng)飛行參數(shù)擬合[D];吉林大學(xué);2015年
2 裴易峰;多波發(fā)射時(shí)間域航空電磁系統(tǒng)數(shù)據(jù)處理及正反演研究[D];吉林大學(xué);2015年
,本文編號(hào):1371192
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1371192.html