受限空間內(nèi)雙向渦流雷諾應(yīng)力方向性特性研究
本文關(guān)鍵詞:受限空間內(nèi)雙向渦流雷諾應(yīng)力方向性特性研究 出處:《哈爾濱工程大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 雙向渦流 湍流 受限空間內(nèi) 數(shù)值計算 渦流冷壁推力室
【摘要】:誕生于21世紀(jì)的渦流冷壁推力室概念(Vortex Combustion Cold-Wall Chamber,VCCWC)是渦流技術(shù)工程化應(yīng)用的典型代表,該推力技術(shù)的核心內(nèi)容為限制在推力室范圍內(nèi)、具有特殊速度分布形式的渦流,該渦流存在軸向速度反向,在推力室壁面與燃燒反應(yīng)區(qū)之間形成外渦冷流,該外渦冷流對推力室壁面起到了隔離熱量傳遞、吸收熱量傳遞的雙重作用。本文采用數(shù)值計算與理論推導(dǎo)相結(jié)合的研究方法,對VCCWC內(nèi)的核心流動:雙向渦流進(jìn)行系統(tǒng)深入的研究,以理論模型結(jié)果與實驗結(jié)果為參考,揭示受限空間內(nèi)雙向渦流流動及其雷諾應(yīng)力特征,進(jìn)而提出其外渦冷流所具有的隔離、吸收熱量傳遞的雙重作用。以實驗數(shù)據(jù)和解析模型作為參考,以RSM模型計算結(jié)果作為對照,研究了基于各向同性渦粘性假設(shè)湍流模型中的旋轉(zhuǎn)修正方法在雙向渦流數(shù)值計算中的適用性。三種旋轉(zhuǎn)修正方法中,附加旋轉(zhuǎn)修正方法性能最差,附加旋轉(zhuǎn)修正項對雙向渦流幾乎沒有作用。漩渦修正方法在修正因子取默認(rèn)值0.07時也沒有太大改善。曲率修正方法在切向速度預(yù)測上相較于前兩種方法有了非常顯著的改善,但是在軸向速度分布預(yù)測上,曲率修正方法依然無法反映出雙向渦流最本質(zhì)特征:壁面附近的軸向速度反向。通過三種旋轉(zhuǎn)修正方法與實驗及理論解的比較可知,只有切向速度分布與軸向速度分布同時符合雙向渦流理論,才能確認(rèn)雙向渦流數(shù)值計算結(jié)果的正確性。從Boussinesq各向同性假設(shè)出發(fā),以實驗數(shù)據(jù)和理論模型作為參考,研究了雙向渦流雷諾應(yīng)力方向性特征。根據(jù)計算結(jié)果可知,二次壓力-應(yīng)變RSM模型在預(yù)測雙向渦流方面存在一定優(yōu)勢,其準(zhǔn)確程度較線性RSM模型有了一定提高。雙向渦流場雷諾應(yīng)力隨渦雷諾數(shù)增大而增大,雷諾應(yīng)力方向性均顯著,在徑向雷諾應(yīng)力峰值的無量綱半徑位置處,徑向雷諾應(yīng)力與切向雷諾應(yīng)力差距達(dá)到了切向雷諾應(yīng)力的150%左右。RNG模型所得雷諾應(yīng)力與RSM模型存在較大差別,各向同性假設(shè)使得RNG模型所得雷諾應(yīng)力趨于均勻。雷諾應(yīng)力預(yù)測錯誤最嚴(yán)重的是切向雷諾應(yīng)力,其分布趨勢與兩種RSM模型相去甚遠(yuǎn)。徑向雷諾應(yīng)力與軸向雷諾應(yīng)力雖然給出了正確的雷諾應(yīng)力分布趨勢,但是數(shù)值大小上與準(zhǔn)確值相去甚遠(yuǎn)。未來對渦粘性湍流模型進(jìn)行考慮雙向渦流特征的修正時,需要人為引入雷諾應(yīng)力方向性特征。以實際渦流冷壁推力室中的收斂噴管為研究對象,數(shù)值模擬研究了收斂段入口尺寸所形成的肩徑比對推力室內(nèi)壓力場及速度場的影響。肩徑比遠(yuǎn)大于無量綱渦幔半徑時,收斂段入口處與肩部渦之間形成的出口渦破壞了流動的順暢性,大的肩徑比通常無法達(dá)到推力室噴管的收縮比要求。肩徑比與無量綱渦幔半徑相當(dāng)時,形成與理論模型非常接近的理想雙向渦流,此時推力室效率達(dá)到最高。當(dāng)肩徑比小于無量綱渦幔半徑時,收斂段內(nèi)會形成虛擬收斂段,該虛擬收斂段不依賴于肩徑比,入射口氧化劑來流中的一部分會直接從噴管流出而并不參加內(nèi)渦燃燒反應(yīng),因而推力室效率顯著降低。旋流條件與雙向渦流特性耦合研究中,通過數(shù)值計算發(fā)現(xiàn),切向速度及最大切向速度均隨入射傾角的增大而減小,隨入射壓降增大而增大,隨長徑比的增大而減小。不同入射傾角、不同入射壓降、不同長徑比下整個發(fā)動機(jī)內(nèi)最大切向速度的無量綱徑向位置均恒定在0.19附近。對于不同長徑比工況,長徑比為1.0時,最大切向速度從發(fā)動機(jī)頂端到入射口附近逐漸增大,長徑比為1.5時,最大切向速度從發(fā)動機(jī)頂端到入射口附近先增大后減小。切向速度及最大切向速度的軸向衰減率維持在3%以內(nèi)。無量綱渦幔半徑從發(fā)動機(jī)頂端開始線性增大到入射口附近,變化范圍為0.71至0.82。入射傾角相同時,隨入射壓降的增大燃燒室長徑比對最大切向速度大小的影響將隨之增大通過理論推導(dǎo)方法,對渦流冷壁推力室內(nèi)的傳熱過程進(jìn)行了理論分析與建模過程,建立了熱流量平衡關(guān)系式。通過理論分析指出,外渦氧化劑冷流存在兩個作用:外渦氧化劑冷流的存在,導(dǎo)致內(nèi)渦向壁面?zhèn)鳠岬臒嶙柙龃罅?14倍以上;由于所吸收的一部分熱量用于自身溫度的升高,外渦氧化劑冷流對壁面事實上起到了冷卻作用,導(dǎo)致外渦向壁面的傳熱量只占內(nèi)渦總傳熱量的60%以下,因此可知外渦氧化劑冷流起到了阻礙熱量傳播與冷卻推力室壁面的雙重作用。
[Abstract]:Born in twenty-first Century in the vortex wall of thrust chamber (Vortex Combustion Cold-Wall Chamber concept, VCCWC) is a typical application of eddy current technology engineering, its core technology is limited in the thrust thrust chamber with special speed range, eddy current distribution form, the vortex flow axial velocity between the reverse thrust chamber wall with the combustion reaction zone is formed outside the outer vortex flow of cold vortex, cold flow on the thrust chamber wall to isolate heat transfer, heat transfer double effect absorption. Research in this paper by means of numerical calculation and theoretical derivation combining the core flow in VCCWC: systematic research on bidirectional eddy current, in theory the model results with the experimental results for reference, revealed in limited space and two-way eddy flow Reynolds stress characteristics, and then puts forward the outer vortex isolation cold flow has the dual role of heat absorption. Based on the experiment data and the analytical model as a reference to the RSM model calculation results as control, study the applicability of rotation correction method of isotropic eddy viscosity turbulence model based on the assumption in the two-way eddy current in numerical calculation. Three rotation correction method, additional rotation correction method for the poor performance, the additional rotation correction of bidirectional eddy current almost no effect. The vortex correction method the default value of 0.07 is not much improvement in the correction factor. The curvature correction method in tangential velocity prediction compared to the previous two methods have a very significant improvement, but the axial velocity distribution prediction, curvature correction method still can not reflect the essential characteristics of two-way eddy current: the axial velocity near the wall. By comparing three kinds of reverse rotation correction method and experimental and theoretical solution, only the distribution of tangential velocity and axial velocity distribution at the same time. The theory of double vortex, in order to confirm the correctness of the two-way eddy current numerical computation. Starting from the Boussinesq isotropic hypothesis, based on the experiment data and theoretical model as reference, the two-way vortex Reynolds stress direction characteristics. According to the results, the two pressure strain RSM model has certain advantages in predicting bidirectional eddy current. The degree of accuracy than the linear RSM model has been improved. The bidirectional eddy current field Reynolds stress increases with the increase of vortex Reynolds number, Reynolds stress direction significantly, should the dimensionless radius position of peak force in radial Reynolds, radial Reynolds stress and tangential Reynolds stress gap reached tangential velocity the 150%.RNG model of income difference should be Reynolds stress and RSM model, the isotropic hypothesis makes the RNG model obtained from the Reynolds stress uniformly. The Reynolds stress prediction error is the most serious Tangential Reynolds stress, the distribution trend and two kinds of RSM models far. Radial Reynolds stress and axial Reynolds stress although given the correct Reynolds stress distribution trend, but the magnitude and exact value far. The future of eddy viscosity turbulence model considering vortex flow characteristics of the bidirectional correction, need to be artificially introduced Reynolds stress direction characteristics. The convergent nozzle wall in actual vortex thrust chamber as the research object, numerical simulation of the entrance convergent section the size of shoulder radius on the thrust chamber pressure field and velocity field. The shoulder diameter ratio is far greater than the dimensionless radius of mantle vortex, the vortex formed between the convergent section the entrance and shoulder vortex destroyed smooth flow, large shoulder diameter ratio cannot achieve the nozzle contraction ratio. The shoulder diameter ratio and dimensionless mantle vortex radius, formation and theoretical model Very close to the ideal two-way vortex, the thrust chamber efficiency reaches the maximum. When the shoulder diameter is less than the dimensionless radius of vortex mantle, will form a virtual convergent section convergence period, the virtual convergent section does not depend on the shoulder diameter ratio, inlet oxidant flow in part will flow directly from the nozzle and does not take part in the in the vortex combustion reaction, so the thrust chamber efficiency is significantly reduced. The coupling study of swirl conditions and bidirectional swirl characteristics, through numerical calculation, the tangential velocity and the maximum tangential velocity increase with incident angle decreases with the increasing incidence of pressure drop increases, decreases with the increase of slenderness ratio for different incident angles. Different incident, pressure drop, different length diameter ratio of the engine maximum tangential velocity and dimensionless radial position are constant in the vicinity of 0.19. For different aspect ratio condition, when the slenderness ratio is 1, the maximum tangential velocity from the top of the engine To the incident near the mouth gradually increased when the slenderness ratio is 1.5, the maximum tangential velocity from the engine to the top of the incident near the mouth increases first and then decreases. The tangential velocity and axial velocity to the maximum shear attenuation rate remained at less than 3%. The dimensionless radius of vortex mantle from the engine began to increase linearly with the top incident near the mouth, change in the range of 0.71 to 0.82. incident angle at the same pressure drop with increase of incident combustion long diameter ratio of the maximum tangential velocity will increase with the size of influence through theoretical derivation method, the heat transfer process of vortex wall thrust chamber is analyzed and the modeling process, established the thermal flow equation. Through theoretical analysis, pointed out that the outer vortex oxidant cold flow has two effects: there is the outer vortex oxidant cold flow resistance, heat transfer within the vortex wall leads to increase of 14 times; due to the absorption of some heat for themselves The increase of temperature, the outer vortex oxidant cold flow on the wall in fact play a cooling effect, resulting in the outer vortex wall surface heat transfer only within the vortex of the total heat transfer of less than 60%, so that the outer vortex oxidant cold flow which prevent the heat transmission and cooling thrust chamber wall surface of the dual role.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O35
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 B.E.Launder ,晏名文;雷諾應(yīng)力輸運(yùn)的封閉方法進(jìn)入第三代[J];力學(xué)進(jìn)展;1980年01期
2 梁在潮,陸晶;湍流雷諾應(yīng)力的本構(gòu)關(guān)系[J];水動力學(xué)研究與進(jìn)展(A輯);2000年01期
3 許兆峰,羅銳,楊獻(xiàn)勇;含氣泡液體流動的剪切雷諾應(yīng)力研究[J];工程力學(xué);2005年03期
4 朱暉;楊志剛;;類車體尾跡區(qū)雷諾應(yīng)力實驗分析[J];同濟(jì)大學(xué)學(xué)報(自然科學(xué)版);2011年10期
5 姜楠;王瑞新;田硯;;圓柱尾流雷諾應(yīng)力與平均運(yùn)動變形率的空間弛豫效應(yīng)[J];實驗力學(xué);2011年06期
6 楊永全,郭勇;雷諾應(yīng)力代數(shù)模型在紊流場計算中的應(yīng)用[J];水力發(fā)電學(xué)報;1990年04期
7 徐肇廷,樓菁,鹿有余;正壓淺海湍流運(yùn)動的雷諾應(yīng)力封閉模型[J];青島海洋大學(xué)學(xué)報;1991年03期
8 陳慶義;湯勇;高音;;雷諾應(yīng)力與流場旋度的關(guān)聯(lián)分析[J];大連海洋大學(xué)學(xué)報;2011年01期
9 周彤;應(yīng)用二階雷諾應(yīng)力封閉的湍流旋流計算[J];航空發(fā)動機(jī);1995年02期
10 胡國清,羅任飛;能量損失與渦漩相關(guān)矩關(guān)系的理論研究[J];水動力學(xué)研究與進(jìn)展(A輯);1996年06期
相關(guān)會議論文 前10條
1 郭愛東;姜楠;;湍流相干結(jié)構(gòu)雷諾應(yīng)力本構(gòu)關(guān)系的弛豫效應(yīng)[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
2 姜楠;霍星;;圓柱尾流雷諾應(yīng)力與平均速度變形率的空間弛豫效應(yīng)[A];第八屆全國實驗流體力學(xué)學(xué)術(shù)會議論文集[C];2010年
3 姜楠;管新蕾;王維;成璐;;壁湍流相干結(jié)構(gòu)雷諾應(yīng)力的空間拓?fù)涮卣鱗A];第九屆全國實驗流體力學(xué)學(xué)術(shù)會議論文集(上冊)[C];2013年
4 賈永霞;姜楠;;相干結(jié)構(gòu)動力學(xué)方程中雷諾應(yīng)力復(fù)渦黏模型的實驗研究[A];第八屆全國實驗流體力學(xué)學(xué)術(shù)會議論文集[C];2010年
5 宋洋;許春曉;黃偉希;崔桂香;;槽道湍流雷諾應(yīng)力輸運(yùn)的分尺度動力學(xué)分析[A];中國力學(xué)大會——2013論文摘要集[C];2013年
6 Imtiaz Ahmad;黃永祥;盧志明;;高雷諾數(shù)衰減湍流中雷諾應(yīng)力的多尺度分析[A];中國力學(xué)大會——2013論文摘要集[C];2013年
7 王新軍;羅紀(jì)生;;周期邊界條件湍流場中流動特性的研究[A];2003’全國流體力學(xué)青年研討會論文集[C];2003年
8 王曉宏;劉正鋒;陸曉霞;;一個基于雙重尺度展開的重正化群雷諾應(yīng)力二階矩模型[A];慶祝中國力學(xué)學(xué)會成立50周年暨中國力學(xué)學(xué)會學(xué)術(shù)大會’2007論文摘要集(下)[C];2007年
9 程勇;王亮;符松;;基于快速畸變理論的壓力-應(yīng)變快速項;椒╗A];中國力學(xué)大會——2013論文摘要集[C];2013年
10 胡站偉;李興華;徐勝金;張衛(wèi)國;;PIV雷諾應(yīng)力測量的影響因素分析[A];第九屆全國實驗流體力學(xué)學(xué)術(shù)會議論文集(下冊)[C];2013年
相關(guān)博士學(xué)位論文 前4條
1 黨進(jìn)鋒;受限空間內(nèi)雙向渦流雷諾應(yīng)力方向性特性研究[D];哈爾濱工程大學(xué);2016年
2 賈永霞;非平衡湍流雷諾應(yīng)力弛豫復(fù)渦黏張量模型的實驗研究[D];天津大學(xué);2012年
3 肖紅林;剪切修正的亞格子模型及其在湍流研究中的應(yīng)用[D];天津大學(xué);2009年
4 岑繼文;新型高效微推進(jìn)技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 霍星;圓柱尾流雷諾應(yīng)力與平均速度變形率空間弛豫效應(yīng)的PIV測量[D];天津大學(xué);2010年
2 張安通;波形壁面湍流場雷諾應(yīng)力與速度變形率弛豫效應(yīng)的TRPIV實驗研究[D];天津大學(xué);2013年
3 王江帆;銥/錸/碳—碳推力室身部關(guān)鍵制備技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
4 龔亮;一氧化二氮單組元發(fā)動機(jī)系統(tǒng)方案設(shè)計及仿真研究[D];國防科學(xué)技術(shù)大學(xué);2013年
5 安鵬;高超聲速飛行器推力室氣動加熱分析[D];哈爾濱工業(yè)大學(xué);2015年
6 許可睿;DMAZ/NTO液體火箭發(fā)動機(jī)推力室方案設(shè)計及燃燒過程仿真研究[D];國防科學(xué)技術(shù)大學(xué);2014年
7 王學(xué)成;推力室內(nèi)壁隔熱、防沖刷鍍覆層工藝研究[D];西安電子科技大學(xué);2007年
8 郭廣西;QCr0.8合金推力室收擴(kuò)段內(nèi)壁模鍛成形研究[D];西安電子科技大學(xué);2007年
9 李星;太陽能熱推進(jìn)系統(tǒng)中吸熱/推力室的流場及性能分析[D];蘭州理工大學(xué);2010年
10 李瑞婷;液氫/液氧火箭推力室室壁失效的數(shù)值研究[D];北京工業(yè)大學(xué);2013年
,本文編號:1358682
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1358682.html