Upconversion/Downconversion Optical Properties of Rare-Earth
發(fā)布時(shí)間:2023-11-03 20:24
在過去的十幾年中,能源短缺和環(huán)境污染愈來愈制約著未來社會的可持續(xù)發(fā)展,太陽能等可再生能源技術(shù)代表了清潔能源的發(fā)展方向。目前所廣泛使用的硅基太陽能電池其光電轉(zhuǎn)換效率理論最大值僅為29%,實(shí)際轉(zhuǎn)換效率約15%。太陽光之所以有很少的百分比轉(zhuǎn)換為電能,原因歸結(jié)于硅太陽能電池不能將全部的太陽光轉(zhuǎn)換為電流。眾所周知,晶體硅的帶隙為1.12eV,對應(yīng)光波波長為1100 nm,即只有波長小于1100 nm的太陽光才可以被晶體硅吸收并產(chǎn)生電子-空穴對,發(fā)生光電轉(zhuǎn)換效應(yīng);而那些波長大于1100 nm的紅外光則由于能量太低而不能被利用,由此造成了大約20%太陽光能量的損失。此外,硅晶體對太陽光有效響應(yīng)頻譜下限是400nm,波長小于400 nm的紫外光也不能被硅基太陽能電池所有效利用;另外,對于波長在400-1100 nm的太陽光,硅晶體吸收一個(gè)光子的同時(shí)只能產(chǎn)生一個(gè)電子—空穴對,而剩余能量通過無輻射形式傳遞給周圍晶格并轉(zhuǎn)換為熱量(熱化效應(yīng)),該部分又損失了大約30%的太陽光能量。因此,硅基太陽能電池對太陽光譜的有效響應(yīng)頻譜范圍有限以及熱化效應(yīng)的存在,成為限制硅基太陽能電池光電轉(zhuǎn)換效率的重要因素。利用稀土離子...
【文章頁數(shù)】:242 頁
【學(xué)位級別】:博士
【文章目錄】:
ACKNOWLEDGEMENTS
摘要
Abstract
List of acronyms
CHAPTER 1:INTRODUCTION
1.1. Overview
1.2. Downconversion mechanisms
1.3. Upconversion mechanisms
1.3.1. Excited State Absorption:ESA
1.3.2. Direct Two Photon Absorption:DTPA
1.3.3. Energy Transfer Upconversion:ETU
1.3.4. Cross-Relaxation:CR
1.4. Applications of the upconversion/downconversion
1.4.1. Applications in the Cancer therapy
1.4.2. Applications in the Optical imaging
1.4.3. Applications in the sensors
1.4.4. Applications in the Solar cells
1.5. Full-width at half maximum
1.6. Rare earth ions(Lanthanides)
1.6.1. 4fenergy levels of lanthanide elements
1.6.2. The Dieke diagram
1.7. Transition metalions
1.8. Judd-Ofelt Theory(J-O Theory)
1.9. Purposes of research and research methods
1.9.1. Purposes of research
1.9.2. Research methods
1.10. Materials and methods experimental
1.10.1. Experimental materials
1.10.2. Methods experimental
1.11. Performance testing of experimental samples
1.11.1. Absorption spectra test
1.11.2. Fluorescence spectra test
1.11.3. X-ray diffraction(XRD)
1.11.4. Transmission Electron Microscopy
1.11.5. Differential thermal analysis
1.12. Innovation of this research
CHAPTER 2:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Er3+, Tb3+,Tm3+) CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICSCONTAINING Ba2LaF7 NANOCRYSTALS
2.1. Energy transfer and UC emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.1.1. Introduction
2.1.2. Experimental details
2.1.3. Results and discussion
2.1.4. Summary
2.2. Energy transfer and UC emission of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.2.1. Introduction
2.2.2. Experimental details
2.2.3. Results and discussion
2.2.4. Summary
2.3. Energy transfer and UC emission of the Tm3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.3.1. Introduction
2.3.2. Experimental details
2.3.3. Results and discussion
2.3.4. Summary
CHAPTER 3:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Tm3+,Tb3+,Er3+)TRI-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
3.1. Energy transfer and UC emission of the Tm3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.1.1. Introduction
3.1.2. Experimental details
3.1.3. Results and discussion
3.1.4. Summary
3.2. Energy transfer and UC emission of the Er3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.2.1. Introduction
3.2.2. Experimental details
3.2.3. Results and discussion
3.2.4. Summary
3.3. Energy transfer and UC emission of the Tm3+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.3.1. Introduction
3.3.2. Experimental deatils
3.3.3. Results and discussion
3.3.4. Summary
CHAPTER 4:EFFECT OF THE Mn2+IONS ON THE ENHANCEMENT UPCONVERSIONEMISSION INTENSITY OF THE Mn3+/RE/Yb3+ (RE=Er3+,Tm3+,Tb3+) TRI-DOPEDTRANSPARENT SILICATE GLASS-CERAMICS
4.1. Effect of the Mn2+ ions on the enhancement red UC emission intensity of the Mn2+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.1.1. Introduction
4.1.2. Experimental details
4.1.3. Results and discussion
4.1.4. Summary
4.2. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.2.1.Introduction
4.2.2. Experimental details
4.2.3. Results and discussion
4.2.4. Summary
4.3. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tm3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.3.1. Introduction
4.3.2. Experimental details
4.3.3. Results and discussion
4.3.4. Summary
CHATER 5:EFFECT OF METALLIC NANOPARTICLES(MNPs:M=Au,Ag,Cu)ON THEENHANCEMENT UPCONVERSION EMISSION INTENSITY OF THE RE/Yb3+ (RE=Tm3+,Tb3+,Er3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
5.1. Effect of Gold Nanoparticles on the enhancement UC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.1.1. Introduction
5.1.2. Experimental details
5.1.3. Results and discussion
5.1.4. Summary
5.2. Effect of Silver Nanoparticles on the enhancement UC emission intensity of the Tm3+/Er3+/Yb3+ transparent silicate glass-ceramics containing BaF2 nanocrystals
5.2.1. Introduction
5.2.2. Experimental details
5.2.3. Results and discussion
5.2.4. Summary
5.3. Effect of Copper Nanoparticles on the enhancement UC emission intensity of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.3.1. Introduction
5.3.2. Experimental details
5.3.3. Results and discussion
5.3.4. Summary
CHAPTER 6:DOWNCONVERSION EMISSION OF THE RE/Yb3+ (RE:Er3+,Nd3+,Pr3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
6.1. Downconversion emission of the Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.1.1. Introduction
6.1.2. Experimental details
6.1.3. Results and discussion
6.1.4. Summary
6.2. Downconversion emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.2.1. Introduction
6.2.2. Experimental details
6.2.3. Results and discussion
6.2.4. Summary
6.3. Downconversion emission of the Pr3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.3.1. Introduction
6.3.2. Experimental details
6.3.3. Results and discussion
6.3.4. Summary
6.4. Effect of Silver nanoparticle on the enhancement DC emission intensity of Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.4.1. Introduction
6.4.2. Experimental details
6.4.3. Results and discussion
6.4.4. Summary
6.5. Effect of Gold Nanoparticle on the enhancement DC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.5.1. Introduction
6.5.2. Experimental details
6.5.3. Results and discussion
6.5.4. Summary
CHAPTER 7:CONCLUSIONS AND FUTURE WORKS
7.1. Conclusions
7.2. Future works
APPENDIX:PAPERS PUBLISHED DURING THE DOCTORAL STUDENT
REFERENCES
本文編號:3859840
【文章頁數(shù)】:242 頁
【學(xué)位級別】:博士
【文章目錄】:
ACKNOWLEDGEMENTS
摘要
Abstract
List of acronyms
CHAPTER 1:INTRODUCTION
1.1. Overview
1.2. Downconversion mechanisms
1.3. Upconversion mechanisms
1.3.1. Excited State Absorption:ESA
1.3.2. Direct Two Photon Absorption:DTPA
1.3.3. Energy Transfer Upconversion:ETU
1.3.4. Cross-Relaxation:CR
1.4. Applications of the upconversion/downconversion
1.4.1. Applications in the Cancer therapy
1.4.2. Applications in the Optical imaging
1.4.3. Applications in the sensors
1.4.4. Applications in the Solar cells
1.5. Full-width at half maximum
1.6. Rare earth ions(Lanthanides)
1.6.1. 4fenergy levels of lanthanide elements
1.6.2. The Dieke diagram
1.7. Transition metalions
1.8. Judd-Ofelt Theory(J-O Theory)
1.9. Purposes of research and research methods
1.9.1. Purposes of research
1.9.2. Research methods
1.10. Materials and methods experimental
1.10.1. Experimental materials
1.10.2. Methods experimental
1.11. Performance testing of experimental samples
1.11.1. Absorption spectra test
1.11.2. Fluorescence spectra test
1.11.3. X-ray diffraction(XRD)
1.11.4. Transmission Electron Microscopy
1.11.5. Differential thermal analysis
1.12. Innovation of this research
CHAPTER 2:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Er3+, Tb3+,Tm3+) CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICSCONTAINING Ba2LaF7 NANOCRYSTALS
2.1. Energy transfer and UC emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.1.1. Introduction
2.1.2. Experimental details
2.1.3. Results and discussion
2.1.4. Summary
2.2. Energy transfer and UC emission of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.2.1. Introduction
2.2.2. Experimental details
2.2.3. Results and discussion
2.2.4. Summary
2.3. Energy transfer and UC emission of the Tm3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.3.1. Introduction
2.3.2. Experimental details
2.3.3. Results and discussion
2.3.4. Summary
CHAPTER 3:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Tm3+,Tb3+,Er3+)TRI-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
3.1. Energy transfer and UC emission of the Tm3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.1.1. Introduction
3.1.2. Experimental details
3.1.3. Results and discussion
3.1.4. Summary
3.2. Energy transfer and UC emission of the Er3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.2.1. Introduction
3.2.2. Experimental details
3.2.3. Results and discussion
3.2.4. Summary
3.3. Energy transfer and UC emission of the Tm3+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.3.1. Introduction
3.3.2. Experimental deatils
3.3.3. Results and discussion
3.3.4. Summary
CHAPTER 4:EFFECT OF THE Mn2+IONS ON THE ENHANCEMENT UPCONVERSIONEMISSION INTENSITY OF THE Mn3+/RE/Yb3+ (RE=Er3+,Tm3+,Tb3+) TRI-DOPEDTRANSPARENT SILICATE GLASS-CERAMICS
4.1. Effect of the Mn2+ ions on the enhancement red UC emission intensity of the Mn2+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.1.1. Introduction
4.1.2. Experimental details
4.1.3. Results and discussion
4.1.4. Summary
4.2. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.2.1.Introduction
4.2.2. Experimental details
4.2.3. Results and discussion
4.2.4. Summary
4.3. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tm3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.3.1. Introduction
4.3.2. Experimental details
4.3.3. Results and discussion
4.3.4. Summary
CHATER 5:EFFECT OF METALLIC NANOPARTICLES(MNPs:M=Au,Ag,Cu)ON THEENHANCEMENT UPCONVERSION EMISSION INTENSITY OF THE RE/Yb3+ (RE=Tm3+,Tb3+,Er3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
5.1. Effect of Gold Nanoparticles on the enhancement UC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.1.1. Introduction
5.1.2. Experimental details
5.1.3. Results and discussion
5.1.4. Summary
5.2. Effect of Silver Nanoparticles on the enhancement UC emission intensity of the Tm3+/Er3+/Yb3+ transparent silicate glass-ceramics containing BaF2 nanocrystals
5.2.1. Introduction
5.2.2. Experimental details
5.2.3. Results and discussion
5.2.4. Summary
5.3. Effect of Copper Nanoparticles on the enhancement UC emission intensity of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.3.1. Introduction
5.3.2. Experimental details
5.3.3. Results and discussion
5.3.4. Summary
CHAPTER 6:DOWNCONVERSION EMISSION OF THE RE/Yb3+ (RE:Er3+,Nd3+,Pr3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
6.1. Downconversion emission of the Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.1.1. Introduction
6.1.2. Experimental details
6.1.3. Results and discussion
6.1.4. Summary
6.2. Downconversion emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.2.1. Introduction
6.2.2. Experimental details
6.2.3. Results and discussion
6.2.4. Summary
6.3. Downconversion emission of the Pr3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.3.1. Introduction
6.3.2. Experimental details
6.3.3. Results and discussion
6.3.4. Summary
6.4. Effect of Silver nanoparticle on the enhancement DC emission intensity of Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.4.1. Introduction
6.4.2. Experimental details
6.4.3. Results and discussion
6.4.4. Summary
6.5. Effect of Gold Nanoparticle on the enhancement DC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.5.1. Introduction
6.5.2. Experimental details
6.5.3. Results and discussion
6.5.4. Summary
CHAPTER 7:CONCLUSIONS AND FUTURE WORKS
7.1. Conclusions
7.2. Future works
APPENDIX:PAPERS PUBLISHED DURING THE DOCTORAL STUDENT
REFERENCES
本文編號:3859840
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/3859840.html
最近更新
教材專著