具有磁芯和介電殼的鐵基納米復(fù)合材料的合成及電磁性能
發(fā)布時間:2021-08-30 22:07
納米復(fù)合材料在解決能源、環(huán)境、國防、電磁污染、健康等諸多問題方面表現(xiàn)出巨大潛力,近幾年成為關(guān)注和研究熱點。納米復(fù)合材料表現(xiàn)出優(yōu)異的協(xié)同效應(yīng)和物理化學(xué)性質(zhì),與其核、殼結(jié)構(gòu)及其表面/界面結(jié)構(gòu)密切相關(guān)。核/殼型納米復(fù)合材料作為微波吸收與屏蔽材料具有重要應(yīng)用價值,將磁性和介電相結(jié)合到核/殼型納米結(jié)構(gòu)中,通過磁共振、界面極化,弛豫極化、渦流共振和傳導(dǎo)損耗等機制實現(xiàn)電磁波的吸收與損耗。電磁波吸收材料根據(jù)其損耗機理可劃分為電介質(zhì)型、磁介質(zhì)型和電阻型。為了解決日益增長的電磁干擾問題和滿足軍事隱身需求,迫切需要研發(fā)強吸收、高強度、重量輕、成本低、頻率范圍寬的微波吸收材料。同時,由于吉赫茲波段微波器件的廣泛使用,如移動通訊、航空飛機、鐵路系統(tǒng)、電網(wǎng)系統(tǒng)、高速公路、局域網(wǎng)、雷達(dá)系統(tǒng)、Wi-Fi、W-LAN、筆記本電腦等,造成的電磁污染對公眾健康和自然環(huán)境產(chǎn)生嚴(yán)重危害。因此,設(shè)計和研發(fā)優(yōu)異的電磁波吸收材料以減少電磁輻射對人體帶來的傷害引起了廣泛重視和深入研究。核/殼型納米復(fù)合材料的電磁性能主要取決于其微觀形貌、粒子尺寸及分布、表面/界面、組成和微觀結(jié)構(gòu)因素等。本論文將重點研究磁/介電型納米復(fù)合材料的制備與表征...
【文章來源】:大連理工大學(xué)遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:162 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
List of Abbreviations
1 Introduction
1.1 Electromagnetic waves
1.1.1 General introduction to EMW
1.1.2 EMW interaction with the material
1.1.3 Measurement of EMW parameters
1.2 Classification of EMW absorbing materials
1.2.1 Magnetic EMW absorbers
1.2.2 Dielectric EMW absorbers
1.2.3 Conducting/Resistive EMW absorbers
1.2.4 Composite EMW absorbers
1.3 Morphologies based nanomaterials for EMW absorption
1.3.1 One-dimensional(1D) absorbing materials
1.3.2 Two-dimensional (2D) absorbing materials
1.3.3 Three dimensional (3D) network structures microwave absorbers
1.4 Preparation approaches to core/shell nanomaterials
1.4.1 Arc discharge plasma process
1.4.2 Laser ablation process
1.4.3 Chemical vapor deposition process
1.4.4 Spray pyrolysis process
1.5 Applications of EMW
1.6 Motivation and thesis outline
2 Experimental details & materials characterization techniques
2.1 Preparation of nanomaterials by dc arc plasma method
2.1.1 Plasma overview
2.1.2 Optical Emission Spectroscopy
2.1.3 Preparation conditions
2.2 Techniques and tools for the characterization of nanocomposites
2.2.1 Characterization techniques
2.2.2 EMW parameters testing
3 Synthesis, characterization and microwave absorption of silica-coated Fe@SiO_2nanocapsules
3.1 Background
3.2 Experimental setup
3.2.1 Synthesis of Fe@SiO_2 NCs and Fe NPs
3.2.2 Preparation of composites for EMW test
3.3 Results and discussion
3.3.1 Crystal structure and morphology characterizations
3.3.2 Surface characterizations
3.3.3 Formation mechanism under OES diagnosis on plasma
3.3.4 Thermal stability
3.3.5 Static magnetic properties
3.3.6 EMW parameters
3.3.7 Microwave absorption properties
3.4 Summary
4 Electromagnetic respondences of the interfacial engineered Fe/FeSi/SiO_2nanocomposites
4.1 Background
4.2 Experimental setup
4.2.1 Synthesis of Fe@FeSi/SiO_2 and FeSi/SiO_2 nanocomposite
4.2.2 Preparation of composites for EMW test
4.3 Results and discussion
4.3.1 Crystal structure and microstructure characterizations
4.3.2 Surface characterizations
4.3.3 Formation mechanism
4.3.4 Static magnetic properties
4.3.5 EMW parameters
4.3.6 Microwave absorption properties
4.4 Summary
5 Zirconium oxide-coated Fe@ZrO_2 nanochains microwave absorbent with superioranti-oxidization capability
5.1 Background
5.2 Experimental setup
5.2.1 Synthesis of Fe@ZrO_2 nanochains
5.2.2 Preparation of composite for EMW test
5.3 Results and discussion
5.3.1 Crystal structure and morphology characterizations
5.3.2 Surface characteriaztions
5.3.3 Formation mechanism of nanocomposites
5.3.4 Static magnetic properties
5.3.5 Thermal stability
5.3.6 EMW parameters
5.3.7 Microwave absorption properties
5.4 Summary
6 Synthesis of carbon-coated (SiC/Fe)@C nanowires (NWs) and the optimizedmicrowave absorption
6.1 Background
6.2 Experimental setup
6.2.1 Synthesis of (SiC/Fe)@C NWs
6.2.2 Preparation of composites for EMW test
6.3 Results and discussion
6.3.1 Crystal structure and morphology characterizations
6.3.2 Formation mechanism of (SiC/Fe)@C NWs
6.3.3 Surface characterizations
6.3.4 Thermal stability
6.3.5 Static magnetic / conductivity properties
6.3.6 EMW parameters
6.3.7 Microwave absorption properties
6.4 Summary
7 Conclusion, innovation, and outlook
7.1 Conclusions
7.2 Innovation points
7.3 創(chuàng)新點
7.4 Outlook
References
Published academic papers during Ph.D
Acknowledgement
About the Author
本文編號:3373585
【文章來源】:大連理工大學(xué)遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:162 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
摘要
List of Abbreviations
1 Introduction
1.1 Electromagnetic waves
1.1.1 General introduction to EMW
1.1.2 EMW interaction with the material
1.1.3 Measurement of EMW parameters
1.2 Classification of EMW absorbing materials
1.2.1 Magnetic EMW absorbers
1.2.2 Dielectric EMW absorbers
1.2.3 Conducting/Resistive EMW absorbers
1.2.4 Composite EMW absorbers
1.3 Morphologies based nanomaterials for EMW absorption
1.3.1 One-dimensional(1D) absorbing materials
1.3.2 Two-dimensional (2D) absorbing materials
1.3.3 Three dimensional (3D) network structures microwave absorbers
1.4 Preparation approaches to core/shell nanomaterials
1.4.1 Arc discharge plasma process
1.4.2 Laser ablation process
1.4.3 Chemical vapor deposition process
1.4.4 Spray pyrolysis process
1.5 Applications of EMW
1.6 Motivation and thesis outline
2 Experimental details & materials characterization techniques
2.1 Preparation of nanomaterials by dc arc plasma method
2.1.1 Plasma overview
2.1.2 Optical Emission Spectroscopy
2.1.3 Preparation conditions
2.2 Techniques and tools for the characterization of nanocomposites
2.2.1 Characterization techniques
2.2.2 EMW parameters testing
3 Synthesis, characterization and microwave absorption of silica-coated Fe@SiO_2nanocapsules
3.1 Background
3.2 Experimental setup
3.2.1 Synthesis of Fe@SiO_2 NCs and Fe NPs
3.2.2 Preparation of composites for EMW test
3.3 Results and discussion
3.3.1 Crystal structure and morphology characterizations
3.3.2 Surface characterizations
3.3.3 Formation mechanism under OES diagnosis on plasma
3.3.4 Thermal stability
3.3.5 Static magnetic properties
3.3.6 EMW parameters
3.3.7 Microwave absorption properties
3.4 Summary
4 Electromagnetic respondences of the interfacial engineered Fe/FeSi/SiO_2nanocomposites
4.1 Background
4.2 Experimental setup
4.2.1 Synthesis of Fe@FeSi/SiO_2 and FeSi/SiO_2 nanocomposite
4.2.2 Preparation of composites for EMW test
4.3 Results and discussion
4.3.1 Crystal structure and microstructure characterizations
4.3.2 Surface characterizations
4.3.3 Formation mechanism
4.3.4 Static magnetic properties
4.3.5 EMW parameters
4.3.6 Microwave absorption properties
4.4 Summary
5 Zirconium oxide-coated Fe@ZrO_2 nanochains microwave absorbent with superioranti-oxidization capability
5.1 Background
5.2 Experimental setup
5.2.1 Synthesis of Fe@ZrO_2 nanochains
5.2.2 Preparation of composite for EMW test
5.3 Results and discussion
5.3.1 Crystal structure and morphology characterizations
5.3.2 Surface characteriaztions
5.3.3 Formation mechanism of nanocomposites
5.3.4 Static magnetic properties
5.3.5 Thermal stability
5.3.6 EMW parameters
5.3.7 Microwave absorption properties
5.4 Summary
6 Synthesis of carbon-coated (SiC/Fe)@C nanowires (NWs) and the optimizedmicrowave absorption
6.1 Background
6.2 Experimental setup
6.2.1 Synthesis of (SiC/Fe)@C NWs
6.2.2 Preparation of composites for EMW test
6.3 Results and discussion
6.3.1 Crystal structure and morphology characterizations
6.3.2 Formation mechanism of (SiC/Fe)@C NWs
6.3.3 Surface characterizations
6.3.4 Thermal stability
6.3.5 Static magnetic / conductivity properties
6.3.6 EMW parameters
6.3.7 Microwave absorption properties
6.4 Summary
7 Conclusion, innovation, and outlook
7.1 Conclusions
7.2 Innovation points
7.3 創(chuàng)新點
7.4 Outlook
References
Published academic papers during Ph.D
Acknowledgement
About the Author
本文編號:3373585
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/3373585.html
最近更新
教材專著