天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

生物炭與非常規(guī)碳質(zhì)改良劑對土壤-植物系統(tǒng)中有毒金屬(膠體)的作用機理研究

發(fā)布時間:2021-06-10 19:31
  近幾十年來,隨著采礦業(yè)和工業(yè)的不斷發(fā)展,各種人類活動引起的土壤中重金屬含量的日益增加,嚴(yán)重危害了土壤環(huán)境。這些被污染的土壤具有糟糕的物理和化學(xué)性質(zhì),一些重金屬在土壤中長期存在,而這些重金屬很難被化學(xué)和生物降解,從而阻礙了植物的生長。目前已經(jīng)研發(fā)了多種物理、化學(xué)和生物修復(fù)技術(shù),這些技術(shù)有助于降低農(nóng)業(yè)土壤、工業(yè)復(fù)合污染土壤和銅尾礦中重金屬的危害。其中有種修復(fù)技術(shù)是利用高表面區(qū)域的有機或無機吸附劑進行原位固化,根據(jù)土壤或銅尾礦的物理化學(xué)結(jié)構(gòu)以及釋放到環(huán)境中重金屬的量,降低金屬陽離子的生物利用度和遷移率。使用不同有機和無機改良劑進行的金屬固定化被認(rèn)為是一種低成本的管理實踐,是一種環(huán)境友好型的方法。它主要通過沉淀、吸附和復(fù)雜的形成處理,利用各種化學(xué)和生物反應(yīng)成功地固定金屬離子。本研究中以竹炭為原料,加入非傳統(tǒng)的含碳改良劑,如粉煤灰、煤矸石、煙煤和褐煤,作為礦山污染土壤和銅尾礦重金屬的固定化劑,對鉻、鈷、鎳、銅、鋅、鎘、鉛等重金屬進行了原位分析。此外,在使用生物炭之前,對煤矸石和煙煤進行水熱處理,對粉煤灰進行酸洗和水熱處理。根據(jù)實驗設(shè)計,這些改良劑將被單獨使用,或者按照1%-2%的比例與生物炭結(jié)合... 

【文章來源】:中國科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校

【文章頁數(shù)】:216 頁

【學(xué)位級別】:博士

【文章目錄】:
ABSTRACT
摘要
Chapter 1- Introduction
    1.1. General introduction
    1.2. Anthropogenic Sources
        1.2.1. Coal resources
        1.2.2. Raw fly ash
        1.2.3. Raw coal gangue
    1.3. Characteristic of amendments used along with biochar
        1.3.1. Physical and chemical properties of low rank coals
        1.3.2. Physical and chemical properties of raw fly ash
        1.3.3. Physical and chemical properties of coal gangue
        1.3.4. Physical and chemical properties of biochar
    1.4. Soil remediation
    1.5. Mechanisms of metal-amendments interactions in soils
        1.5.1. Mechanisms of metal-biochar interactions in soils
        1.5.2. Mechanisms of metal-fly ash interactions in soils
        1.5.3. Mechanisms of combined interactions of amendments in soils
    1.6. Scope and overall objects of the present study
        1.6.1. Production and characteristics of amendments for process optimization
        1.6.2. Environmental application of biochar and carbonaceous amendments for HMsremediation
Chapter 2-Materials and methods
    2.1. Profile of study area
        2.1.1. Huainan coalfield area
        2.1.2. Tongling area
    2.2. Amendments collection and pretreatment
        2.2.1. Soil collection
        2.2.2. Copper mine tailing collection
        2.2.3. Raw coal collection
        2.2.4. Raw fly ash collection
        2.2.5. Raw coal gangue collection
        2.2.6. Lignite collection
        2.2.7. Bamboo biochar preparation
    2.3. Experimental section
        2.3.1. H_2SO_4 washing
        2.3.2. HCl washing
        2.3.3. Hydrothermal treatment
        2.3.4. EDTA-Extraction
        2.3.5. DTPA-Extraction
        2.3.6. Sequential extraction analysis
        2.3.7. Sample preparation for total digestion
        2.3.8. ICP-MS and ICP-AES analysis
        2.3.9. SEM/EDS
        2.3.10. XPS analysis
        2.3.11. XRD analysis
        2.3.12. FTIR analysis
        2.3.13. Surface area analysis
        2.3.14. Ultimate analysis
    2.4. Pot Experiments
        2.4.1. Plant growth conditions
        2.4.2. Plant harvest and measurement of growth related parameters
        2.4.3. Plants elemental analysis
        2.4.4. Pore-water analysis
    2.5. Factors Analysis
        2.5.1. Bioconcentration factor(BCF)
        2.5.2. Translocation factor from soil to vegetables
        2.5.3. Metals uptake
        2.5.4. Transfer rate
    2.6. Data analysis
Chapter 3-Synergistic effects of biochar and processed fly ash onbioavailability, transformation and accumulation of heavy metals bymaize (Zea mays L.) in coal-mining contaminated soil
    3.1. Introduction
    3.2. Characteristic of studied soil and amendments
        3.2.1. Physicochemical properties of soil and amendments
        3.2.2. Morphological characterization and mineral compositions of bamboo biochar
        3.2.3. Morphological characterization and mineral compositions of raw fly ash
        3.2.4. Morphological characterization and mineral compositions of processed fly ash
        3.2.5. Elemental composition of soil after applied amendments
        3.2.6. Effects of different amendments on plant physiological development
        3.2.7. Characteristic of post-experimental soil
        3.2.8. Effects of amendments on the EDTA- and/or DTPA-extractable metals in soil
        3.2.9. Effects of amendments on the metals speciations in the soil
        3.2.10. Metals concentration in maize plants
        3.2.11. Effects of treatments on the transfer rate and translocation of heavy metalsto maize plants
    3.3. Summary
Chapter 4-Contrasting effects of biochar and hydrothermally treatedcoal gangue on leachability, bioavailability, speciation and accumulationof heavy metals by rapeseed in copper mine tailings
    4.1. Introduction
    4.2. Characteristics of Cu-MT and amendments
        4.2.1. Physical and chemical properties of the Cu-MT and amendments
        4.2.2. Major elemental chemical compositions of Cu-MT and amendments
        4.2.3. Quantitative X-ray diffraction analysis
        4.2.4. Mineralogical characteristics of Cu-MT and amendments
        4.2.5. XPS characteristics of Cu-MT and amendments
        4.2.6. Speciation distribution of HMs in coal gangue
    4.3. Post-harvest effect of amendments on Cu-MT characteristics
        4.3.1. Effect of amendments on pH, EC, SOC, and WHC in Cu-MT
        4.3.2. Leachability of heavy metals in pore water (PW)
        4.3.3. EDTA-extractable metals in soil
        4.3.4. Sequential extraction of heavy metals
    4.4. Growth and yield parameters
        4.4.1. Changes in fresh and dry biomass and heavy metal content of maize shoots
        4.4.2. Heavy metals uptake and transfer rate (TR)
        4.4.3. Bioconcentration and translocation factors
    4.5. Discussion
        4.5.1. Effects of amendments on Cu-MT chemical characteristics
        4.5.2. Leaching behavior of heavy metals in Cu-MT
        4.5.3. Effect of applied amendments on heavy metal mobility
        4.5.4. Effects of applied amendments on HMs speciation
        4.5.5. Uptake, transfer rate, bio-concentration and translocation factors of HMs
    4.6. Summary
Chapter 5-Bamboo-biochar and hydrothermally treated-coal mediatedgeochemical speciation, transformation and uptake of Cd, Cr, and Pb in apolymetal(iod)s-contaminated mine soil
    5.1. Introduction
    5.2. Basic analysis of soil and amendments
        5.2.1. Sequential extraction analysis of raw and hydrothermally treated coal
        5.2.2. SEM analysis of raw and hydrothermally treated coal
        5.2.3. FTIR analysis of raw and hydrothermally treated coal
        5.2.4. XRD analysis of raw and hydrothermally treated coal
        5.2.5. XPS analysis of raw and hydrothermally treated coal
    5.3. Physicochemical properties of soil in response to amendments
        5.3.1. Influence of amendments on soil pH, EC and SOC
        5.3.2. Metal(loid) concentrations in soil pore water and immobilization in soil
        5.3.3. Effect of applied amendments on Cd, Cr, and Pb fractionation in soil
        5.3.4. FTIR and XRD analysis of amended soil
        5.3.5. XPS analysis of amended soil
    5.4. Influence of amendments on biomass
        5.4.1. Plant response on HMs uptake, translocation, and bioaccumulation
        5.4.2. FTIR spectral studies of root samples
    5.5. Summaiy
Chapter 6-Interactive assessment of lignite and bamboo-biochar forgeochemical speciation, modulation and uptake of Cu and other heavymetals in the copper mine tailing
    6.1. Introduction
    6.2. Characterization of mine tailing and applied amendments
    6.3. Impacts of applied amendments on copper mine tailing
        6.3.1. Characteristics of amended copper mine tailing
        6.3.2. Interaction of plant metal contents in both cropping seasons
        6.3.3. Plant growth response
        6.3.4. Influence on the uptake and transfer factor of metals
        6.3.5. Effect of applied amendments on Cu and other HMs in pore water
        6.3.6. Metals immobilization in copper mine tailing
        6.3.7. Geochemical speciation of metals in copper mine tailing
        6.3.8. The amendments effect on adsorption mechanisms
        6.3.9. FTIR spectroscopic analysis after applied amendments
        6.3.10. Change in XRD spectrum of Cu-MT after applied amendments
    6.4. Summaiy
Chapter 7-Major Conclusions and Innovations
    7.1. Major Conclusions
        7.1.1. Synergistic effects of biochar and processed fly ash on bioavailability, transformationand accumulation of heavy metals by maize in coal-mining contaminated soil
        7.1.2. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability,bioavailability, speciation and accumulation of heavy metals by rapeseed in copper minetailings
        7.1.3. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation,transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil
        7.1.4. Interactive assessment of lignite and bamboo-biochar for geochemical speciation,modulation and uptake of Cu and other heavy metals in the copper mine tailing
    7.2. Innovations
References
Appendix
    List of figures
    List of tables
Acknowledgements
The applicant profile
    1. The main research project during the Ph.D. degree
    2. Conference attended during the Ph.D. degree
    3. Research publications


【參考文獻】:
期刊論文
[1]Residual effects of tobacco biochar along with different fixing agents on stabilization of trace elements in multi-metal contaminated soils[J]. Altaf Hussain Lahori,Monika Mierzwa-Hersztek,Muhammad Rashid,Shahmir Ali Kalhoro,Mehrunisa Memon,Zobia Naheed,Muneer Ahmed,Zengqiang Zhang.  Journal of Environmental Sciences. 2020(01)
[2]Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods[J]. Mingming Wang,Liangsuo Ren,Dayang Wang,Zuansi Cai,Xuefeng Xia,Aizhong Ding.  Journal of Environmental Sciences. 2019(05)
[3]Review on utilization of biochar for metal-contaminated soil and sediment remediation[J]. Mingming Wang,Yi Zhu,Lirong Cheng,Bruce Andserson,Xiaohui Zhao,Dayang Wang,Aizhong Ding.  Journal of Environmental Sciences. 2018(01)
[4]Development and validation of abiotic ligand model for nickel toxicity to wheat(Triticum aestivum)[J]. Yang Jiang,Xueyuan Gu,Bojing Zhu,Cheng Gu.  Journal of Environmental Sciences. 2017(12)
[5]Assessment of Methods for Determining Bioavailability of Trace Elements in Soils: A Review[J]. Jurate KUMPIENE,Laura GIAGNONI,Bernd MARSCHNER,Sébastien DENYS,Michel MENCH,Kristin ADRIAENSEN,Jaco VANGRONSVELD,Markus PUSCHENREITER,Giancarlo RENELLA.  Pedosphere. 2017(03)
[6]NaOH水熱轉(zhuǎn)化-H2SO4浸出法從硫酸法鈦白酸解殘渣(黑泥)中回收利用鈦(英文)[J]. 孟凡成,薛天艷,劉亞輝,張國之,齊濤.  Transactions of Nonferrous Metals Society of China. 2016(06)
[7]Growth, Metabolism and Yield of Rice Cultivated in Soils Amended with Fly Ash and Cyanobacteria and Metal Loads in Plant Parts[J]. Rabindra N.PADHY,Nabakishore NAYAK,Rajesh R.DASH-MOHINI,Shakti RATH,Rajani K.SAHU.  Rice Science. 2016(01)
[8]Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation[J]. CHRISTIE Peter.  Science in China(Series C:Life Sciences). 2005(S1)



本文編號:3222988

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/3222988.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dd8db***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com