天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

基于熱誘導(dǎo)與超聲改性制備并表征乳清蛋白基3,3’-二吲哚甲烷納米顆粒

發(fā)布時間:2021-01-06 16:08
  作為干酪和干酪素生產(chǎn)過程中產(chǎn)生的重要副產(chǎn)物,乳清蛋白因其含有9種必需氨基酸而被稱為是一種完全蛋白質(zhì)。乳清蛋白具有優(yōu)異的營養(yǎng)特性,如改善低血壓、增強(qiáng)機(jī)體免疫力、維護(hù)腸道健康、降低膽固醇、促進(jìn)胰島素分泌、增強(qiáng)機(jī)體對礦物質(zhì)吸收、抗氧化、抗癌以及抗菌能力等。此外,乳清蛋白也具有蛋白質(zhì)的功能特性,例如乳化性、增稠性、膠凝性、發(fā)泡性以及成膜性等。由于其優(yōu)異的營養(yǎng)品質(zhì)和功能特性,乳清蛋白已被廣泛應(yīng)用于食品工業(yè)之中。為進(jìn)一步擴(kuò)展其在食品領(lǐng)域中的應(yīng)用,多種物理或化學(xué)方法被應(yīng)用在乳清蛋白改性上面,例如熱誘導(dǎo)、酶交聯(lián)以及化學(xué)修飾法等。同時,高壓等離子體、高壓脈沖電場、伽馬射線輻照、高強(qiáng)度超聲等新技術(shù)的引入對于乳清蛋白的改性研究具有深遠(yuǎn)的影響。本研究擬通過熱誘導(dǎo)或超聲誘導(dǎo)方法對乳清蛋白進(jìn)行改性,在增強(qiáng)乳清蛋白的功能特性,從而提高其潛在應(yīng)用價值。熱誘導(dǎo)改性是目前對乳清蛋白物理改性所采用的最普遍的方法。其改性機(jī)理主要由其所含有的β-乳球蛋白的特性導(dǎo)致。簡單來說,β-乳球蛋白在特定pH下加熱到70°C以上時會使其氫鍵斷裂,三維結(jié)構(gòu)展開,解離成鏈狀分子,并在后續(xù)加熱過程中通過二硫鍵相互結(jié)合形成三維網(wǎng)絡(luò)并發(fā)生聚集。通過... 

【文章來源】:吉林大學(xué)吉林省 211工程院校 985工程院校 教育部直屬院校

【文章頁數(shù)】:162 頁

【學(xué)位級別】:博士

【文章目錄】:
摘要
Abstract
LIST OF ABBREVIATIONS
CHAPTER INTRODUCTION
    1.1 Whey Protein Overview
        1.1.1 Chemical Composition
        1.1.2 Major Whey Proteins
        1.1.3 Nutritional Properties of Whey Protein
        1.1.4 Functional Properties of Whey Proteins
    1.2 Whey Protein-based Nanoparticles Encapsulation of BioactiveCompounds
        1.2.1 Overview of Nanoparticles
        1.2.2 Whey Protein-based Nanoparticles
        1.2.3 Enhancement of Whey Proteins-based Nanoparticles forBioactive Compounds by Thermal or Ultrasound Method
        1.2.4 Advantages of Whey Protein-based Nanoparticles forBioactive Compounds
    1.3 3,3?-Diindolylmethane (DIM)
        1.3.1 Introduction of 3,3?-Diindolylmethane (DIM)
        1.3.2 Role of 3,3′-Diindolylmethane in the Treatment of Castrate-    resistant Prostate Cancer (CRPC) of Human MetastaticProstate Cancer
    1.4 Research Contents
        1.4.1 Significance of the Research
        1.4.2 Research Content
    1.5 Innovation Points
    1.6 Experimental Model
CHAPTER 2 Preparation and Characterization of Whey ProteinIsolate-Dim Nanoparticles
    2.1 Materials and Equipments
        2.1.1 Materials and Reagents
        2.1.2 Instruments and Equipments
    2.2 Methodology
        2.2.1 Nanoparticles Preparation
        2.2.2 Determination of Particle size, Polydispersityindex (PDI) andZeta Potential
        2.2.3 Encapsulation Efficiency (EE)
        2.2.4 Differential Scanning Calorimetry (DSC)
        2.2.5 Determination of Rheological Properties
        2.2.6 Fourier Transform Infrared Spectroscopy (FT-IR)
        2.2.7 Transmission Electron Microscopy (TEM) Analysis
        2.2.8 The Influence of Encapsulation on Stability of DIM
        2.2.9 Experimental Design
    2.3 Results and Discussion
        2.3.1 Physicochemical Determination of DIM-encapsulated WPINanoparticles
        2.3.2 Thermal Properties of the DIM-encapsulated WPI Nanoparticles
        2.3.3 Rheological Properties of the DIM-encapsulated WPINanoparticles
        2.3.4 Fourier Transform Infrared Spectroscopy (FT-IR)
        2.3.5 Transmission Electron Microscopy (TEM)
        2.3.6 Photochemical Stability
        2.3.7 Impact of pH
    2.4 Conclusions
CHAPTER 3 Physicochemical and Microstructural Properties of     Polymerized Whey Protein Concentrate Encapsulated3, 3?-Diindolylmethane Nanoparticles
    3.1 Materials and Equipments
        3.1.1 Materials and Reagents
        3.1.2 Instruments and Equipments
    3.2 Methodology
        3.2.1 Sample Preparation
        3.2.2 Particle Size and Zeta potential Measurement
        3.2.3 Rheological Determinations
        3.2.4 Fourier Transform Infrared (FTIR) Spectra Analysis
        3.2.5 Transmission Electron Microscopy (TEM) Analysis
        3.2.6 Storage Stability Analysis
        3.2.7 Statistical Analysis
    3.3 Results and Discussion
        3.3.1 Particle Size and Zeta Potential of PWP–DIM Nanoparticles
        3.3.2 Rheological Properties of PWP–DIM Nanoparticles
        3.3.3 FTIR spectra of PWP–DIM Nanoparticles
        3.3.4 Microstructure of PWP–DIM Nanoparticles
        3.3.5 Changes in Color and Absorbance of PWP–DIMNanoparticles During Storage
        3.3.6 Changes in Particle Size and Zeta Potential of PWP–DimNanoparticles During Storage
    3.4 Conclusions
CHAPTER 4 Effect of Ultrasound Treatment on the Physicochemical,Microstructural and Antioxidative Properties of Whey Protein Concentrate Encapsulated 3,3’-Diindolylmethane Nanoparticles
    4.1 Materials and Equipments
        4.1.1 Materials and Reagents
        4.1.2 Instruments and Equipments
    4.2 Methodology
        4.2.1 Preparation of Nanoparticles
        4.2.2 Ultrasound Treatment of WPC–DIM Nanoparticles
        4.2.3 Nanoparticles Characterization
        4.2.4 Encapsulation Efficiency (EE%)
        4.2.5 Rheological Determination
        4.2.6 Color and p H Measurement
        4.2.7 Transmission Electron Microscopy (TEM)
        4.2.8 Freeze Drying
        4.2.9 Differential Scanning Calorimetry (DSC)
        4.2.10 Fourier Transform Infrared Spectroscopy (FT-IR)
        4.2.11 Antioxidant Activity
        4.2.12 Statistical Analyses
    4.3 Results and Discussion
        4.3.1 Effect of Ultrasound Treatment on the Particle Size, PolydispersityIndex (PDI) and Zeta Potential of WPC–DIM Nanoparticles
        4.3.2 Effect of Ultrasound Treatment on the EncapsulationEfficiency (EE%) of WPC–DIM Nanoparticles
        4.3.3 Effect of Ultrasound Treatment on Rheological Properties ofWPC–DIM Nanoparticles
        4.3.4 Effect of Ultrasound Treatment on Color and p H ofWPC–DIM Nanoparticles
        4.3.5 Effect of Ultrasound Treatment on Microstructure ofWPC–DIM Nanoparticles
        4.3.6 Effect of Ultrasound Treatment on Differential ScanningCalorimetry (DSC) of WPC–DIM Nanoparticles
        4.3.7 Effect of Ultrasound Treatment on Fourier Transform Infrared(FT-IR) Spectra of WPC–DIM Nanoparticles
        4.3.8 Effect of Ultrasound Treatment on Antioxidant Activity ofWPC–DIM Nanoparticles
    4.4 Conclusions
CHAPTER 5 Clinical Study on Oral Whey Protein EncapsulatedDIM in Castrate-resistant Metastatic Prostate Cancer
    5.1 Materials and Equipments
        5.1.1 Materials and Reagents
        5.1.2 Instruments and Equipments
    5.2 Methodology
        5.2.1 Patients Selection
        5.2.2 Study Design
        5.2.3 Treatment Protocol
        5.2.4 Quality of Life (QoL)
        5.2.5 Biochemical Assessment
        5.2.6 Statistical Analysis
    5.3 Results and Discussions
        5.3.1 Anthropometric Measurement of the Patients
        5.3.2 Structure of the EORTC QLQ-PR25
        5.3.3 Quality of Life
        5.3.4 Effect of the Intervention on PSA Levels of the Patients
        5.3.5 Medical Events and Side Effects
        5.3.6 Discussion
        5.3.7 Conclusions
CHAPTER 6 CONCLUSIONS
    6.1 Summary
    6.2 Conclusions and Recommendations
LITERATURE CITED
ANNEXURE Ⅰ CONSENT LETTER
ANNEXURE Ⅱ
Self Introduction and the Scientific Research Achievements ObtainedDuring the Doctoral Degree
ACKNOWLEDGEMENTS



本文編號:2960866

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2960866.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶26fb6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com