Fabrication of Metal Vanadates(M x V y O z ,M=Bi,Cu)and Silv
發(fā)布時間:2020-12-15 11:38
地球上最豐富的能源是太陽光。利用太陽能進(jìn)行綠色能源生產(chǎn)和環(huán)境修復(fù),從根本上解決了能源安全和環(huán)境污染兩大難題。光電化學(xué)(PEC)是一種借助半導(dǎo)體材料,將太陽光轉(zhuǎn)化為可儲存的氫燃料的水分解技術(shù),是一種溫和、綠色、可再生的現(xiàn)代的技術(shù)。另一方面,盡管能源危機(jī)愈演愈烈,但環(huán)境污染問題的日益加劇又是當(dāng)前人類生存面臨的又一大威脅。眾多的環(huán)境污染中,水污染嚴(yán)重影響著地球上人類的日;顒,造成了嚴(yán)重的經(jīng)濟(jì)損失。因此利用可以吸收太陽光的半導(dǎo)體凈化廢水,是一種很有前景的污水處理技術(shù)。太陽能制氫和廢水處理新技術(shù)商業(yè)化的瓶頸在于其制造成本。PEC技術(shù)和廢水處理系統(tǒng)的成本主要取決于所使用的前驅(qū)體材料和制造方法。盡管一些低成本材料在太陽能水分解和廢水處理方面顯示出不錯的活性和穩(wěn)定性,但其制備方法復(fù)雜,價格昂貴以及無法大規(guī)模使用。在本文中,我們介紹了一種新穎且高效的原位燃燒方法,制備了具有低成本的三元氧化物材料MxVyOz(M=Bi,Cu)薄層光電極和新型多功能(PAN)/AgBr/Ag靜電紡絲纖維膜用于光催化以及廢水處理領(lǐng)域。首先,我們利用原位燃燒方法制備了釩酸鉍(BiVO4)光陽極。燃燒過程中的放熱反應(yīng)可以加速溶...
【文章來源】:山東大學(xué)山東省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:157 頁
【學(xué)位級別】:博士
【文章目錄】:
Acknowledgements
List of abbreviations
ABSTRACT
Chinese Abstract (摘要)
Chapter #1 Introduction & research background
1.1 Energy crisis and environmental pollution
1.2 Harvesting solar light for hydrogen production from water
1.2.1 Hydrogen as an alternative to fossil fuels
1.2.2 Water as a green and abundant source of hydrogen
1.2.3 Electrochemical (EC) water splitting
1.2.4 Photocatalytic (PC) water splitting
1.2.5 Photoelectrochemical (PEC) water splitting
xVyO2 based photoelectrodes for PEC water splitting"> 1.2.6 Metal vanadate MxVyO2 based photoelectrodes for PEC water splitting
1.3 Harvesting solar light for wastewater treatment
1.3.1 Water scarcity
1.3.2 Types of water pollutants
1.3.3 Waste water treatment systems
1.3.4 Photocatalytic decontamination of wastewater
1.4 References
Chapter #2 An in-situ combustion method for scale-up fabrication of BiV04 photoanodes withenhanced long-term photostability for unassisted solar water splitting
2.1 Introduction
2.2 Experimental section
2.2.1 Materials
2.2.2 Characterization
4 and MOD-BiVO4 photoanodes"> 2.2.3 Fabrication of the COM-BiVO4 and MOD-BiVO4 photoanodes
4 photoanodes"> 2.2.4 Deposition of cocatalysts on combustion processed COM-BiVO4 photoanodes
2.2.5 Photoelectrochemical measurements
2.2.6 Tandem design and side-by-side design of the PEC-PV cell
2.2.7 Fabrication of a PEC-PV device
2.2.8 Calculations
2.3 Results and discussions
4 photoanodes"> 2.3.1 Combustion synthesis of the BiVO4 photoanodes
2.3.2 Discussion of the combustion process and a comparison with the MOD-preparedsample
4 photoanodes for the oxidation ofsulfite"> 2.3.3 Photoelectrochemical performance of the BiVO4 photoanodes for the oxidation ofsulfite
4photoanode and their long-term photostability for oxygen evolution"> 2.3.4 Cocatalyst deposition, scale-up fabrication of the combustion processed BiVO4photoanode and their long-term photostability for oxygen evolution
2.3.5 A PEC-PV cell for unassisted solar water splitting
2.4 Conclusions
2.5 References
xVyOx (β-Cu2V2O7 and γ-Cu3V2O8) photoanodes filmsfor photoelectrochemical water splitting">Chapter #3 Facile preparation of two efficient CuxVyOx (β-Cu2V2O7 and γ-Cu3V2O8) photoanodes filmsfor photoelectrochemical water splitting
3.1 Introduction
3.2 Experimental
3.2.1 Materials
xVyOz photoanodes"> 3.2.2 Preparation of CuxVyOz photoanodes
3.2.3 Characterization
3.2.4 Photoelectrochemical measurements
3.3 Results and discussions
3.3.1 Synthesis, micro-electronic structure and physiochemical characterization
3V2O8 and γ-Cu2V2O7 photoanodes"> 3.3.2 PEC water splitting performances of γ-Cu3V2O8 and γ-Cu2V2O7 photoanodes
3.4 Conclusions
3.5 References
Chapter #4 Efficient decontamination of multi-component wastewater by hydrophilic electrospunPAN/AgBr/Ag fibrous membrane
4.1 Introduction
4.2 Experimental
4.2.1 Fabrication of PAN/AgBr/Ag fibrous membranes
4.2.2 Characterization
4.2.3 Photocatalytic activity
4.2.4 Antibacterial test
4.2.5 Filtration performance
4.2.6 Computational details
4.3 Results and discussions
4.3.1 Physicochemical characterization and electronic structure of the PAN/AgBr/Agfibrous membrane
4.3.2 Photocatalysis, sterilization and filtration properties of PAN/AgBr/Ag fibrousmembrane
4.3.3 Overall performance of PAN/AgBr/Ag fibrous membrane towards simulatedwastewater
4.4 Conclusions
4.5 References
Conclusions
Innovations and limitations
Publications
學(xué)位論文評閱及答辯情況表
本文編號:2918202
【文章來源】:山東大學(xué)山東省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:157 頁
【學(xué)位級別】:博士
【文章目錄】:
Acknowledgements
List of abbreviations
ABSTRACT
Chinese Abstract (摘要)
Chapter #1 Introduction & research background
1.1 Energy crisis and environmental pollution
1.2 Harvesting solar light for hydrogen production from water
1.2.1 Hydrogen as an alternative to fossil fuels
1.2.2 Water as a green and abundant source of hydrogen
1.2.3 Electrochemical (EC) water splitting
1.2.4 Photocatalytic (PC) water splitting
1.2.5 Photoelectrochemical (PEC) water splitting
xVyO2 based photoelectrodes for PEC water splitting"> 1.2.6 Metal vanadate MxVyO2 based photoelectrodes for PEC water splitting
1.3 Harvesting solar light for wastewater treatment
1.3.1 Water scarcity
1.3.2 Types of water pollutants
1.3.3 Waste water treatment systems
1.3.4 Photocatalytic decontamination of wastewater
1.4 References
Chapter #2 An in-situ combustion method for scale-up fabrication of BiV04 photoanodes withenhanced long-term photostability for unassisted solar water splitting
2.1 Introduction
2.2 Experimental section
2.2.1 Materials
2.2.2 Characterization
4 and MOD-BiVO4 photoanodes"> 2.2.3 Fabrication of the COM-BiVO4 and MOD-BiVO4 photoanodes
4 photoanodes"> 2.2.4 Deposition of cocatalysts on combustion processed COM-BiVO4 photoanodes
2.2.5 Photoelectrochemical measurements
2.2.6 Tandem design and side-by-side design of the PEC-PV cell
2.2.7 Fabrication of a PEC-PV device
2.2.8 Calculations
2.3 Results and discussions
4 photoanodes"> 2.3.1 Combustion synthesis of the BiVO4 photoanodes
2.3.2 Discussion of the combustion process and a comparison with the MOD-preparedsample
4 photoanodes for the oxidation ofsulfite"> 2.3.3 Photoelectrochemical performance of the BiVO4 photoanodes for the oxidation ofsulfite
4photoanode and their long-term photostability for oxygen evolution"> 2.3.4 Cocatalyst deposition, scale-up fabrication of the combustion processed BiVO4photoanode and their long-term photostability for oxygen evolution
2.3.5 A PEC-PV cell for unassisted solar water splitting
2.4 Conclusions
2.5 References
xVyOx (β-Cu2V2O7 and γ-Cu3V2O8) photoanodes filmsfor photoelectrochemical water splitting">Chapter #3 Facile preparation of two efficient CuxVyOx (β-Cu2V2O7 and γ-Cu3V2O8) photoanodes filmsfor photoelectrochemical water splitting
3.1 Introduction
3.2 Experimental
3.2.1 Materials
xVyOz photoanodes"> 3.2.2 Preparation of CuxVyOz photoanodes
3.2.3 Characterization
3.2.4 Photoelectrochemical measurements
3.3 Results and discussions
3.3.1 Synthesis, micro-electronic structure and physiochemical characterization
3V2O8 and γ-Cu2V2O7 photoanodes"> 3.3.2 PEC water splitting performances of γ-Cu3V2O8 and γ-Cu2V2O7 photoanodes
3.4 Conclusions
3.5 References
Chapter #4 Efficient decontamination of multi-component wastewater by hydrophilic electrospunPAN/AgBr/Ag fibrous membrane
4.1 Introduction
4.2 Experimental
4.2.1 Fabrication of PAN/AgBr/Ag fibrous membranes
4.2.2 Characterization
4.2.3 Photocatalytic activity
4.2.4 Antibacterial test
4.2.5 Filtration performance
4.2.6 Computational details
4.3 Results and discussions
4.3.1 Physicochemical characterization and electronic structure of the PAN/AgBr/Agfibrous membrane
4.3.2 Photocatalysis, sterilization and filtration properties of PAN/AgBr/Ag fibrousmembrane
4.3.3 Overall performance of PAN/AgBr/Ag fibrous membrane towards simulatedwastewater
4.4 Conclusions
4.5 References
Conclusions
Innovations and limitations
Publications
學(xué)位論文評閱及答辯情況表
本文編號:2918202
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2918202.html
最近更新
教材專著