天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程博士論文 >

考慮交通車輛運動不確定性的軌跡規(guī)劃方法研究

發(fā)布時間:2019-06-05 17:15
【摘要】:汽車智能化是應對汽車工業(yè)發(fā)展所面臨的安全、擁堵和環(huán)保等諸多問題的關鍵技術途徑,也是汽車技術發(fā)展的必然趨勢。做為智能車輛的關鍵技術之一,軌跡規(guī)劃需要對規(guī)劃狀態(tài)進行準確地危險評估,并基于此規(guī)劃出車輛的行駛路徑和速度,從而保證智能車輛在交通環(huán)境中的行駛安全性。這要求在軌跡規(guī)劃中必須對交通車輛的運動軌跡做出合理的預測。但對智能車輛而言,交通車輛的未來運動是不確定的,具有一定的隨機性。忽略交通車輛運動的不確定性將導致危險評估結果不夠準確,從而影響智能車輛的行駛安全性。因此,在對交通車輛進行軌跡預測時,不僅不可忽略運動的不確定性,還必須獲取其準確的概率特性。與此同時,確定性的危險評估結果也已經不能準確反映規(guī)劃狀態(tài)的安全性,其安全性僅能以碰撞概率的形式表達。為了提高軌跡規(guī)劃的性能、保障智能車輛的行駛安全性,必須充分考慮由交通車輛運動不確定性引起的碰撞概率的影響。基于行為的運動模型框架是預測交通車輛運動軌跡的有效方法。但駕駛人不同的駕駛風格使得同一駕駛行為下的運動軌跡有著不同的運動模式。若忽略該差異必然導致預測所得概率特性不夠準確。因此,為了提高預測準確性需建立不同模式的運動模型并實現(xiàn)運動模式的辨識;谥С窒蛄繖C的分類器是解決辨識問題的有效方法。傳統(tǒng)的分類器將輸入樣本視為獨立存在的個體,其結果依賴于分類器自身性能以及當前輸入樣本。但由于難以通過車載傳感獲取交通車輛內部參數以及駕駛員狀態(tài)、車輛狀態(tài)的實時數據,使得對模式辨識僅能依賴有限的外部傳感信息。因此,難以保證單分類器對單樣本辨識結果的準確性。在基于行為的運動模型框架下,高斯過程運動模型是描述汽車運動隨機性的有效方法,建立不同運動模式所對應的運動模型是實現(xiàn)交通車輛軌跡預測的基礎。但直接以運動模型表征交通車輛運動不確定性的概率特性并不準確,必須考慮模型中與實時運動軌跡相匹配的先驗向量對預測向量概率特性的影響。而運動模式辨識僅確定了實時軌跡的運動模型,與之匹配的先驗向量依然是未知的,現(xiàn)有研究中對該問題的解決鮮有提及?焖偎阉麟S機樹具有概率完備性及快速求得可行解的能力,是解決汽車軌跡規(guī)劃問題的有效方法。傳統(tǒng)研究多集中于對汽車運動學、動力學約束及算法實時性等問題的考慮,較少關注交通車輛運動不確定性的影響。因此,傳統(tǒng)方法通常以邏輯判斷的形式表達搜索樹中節(jié)點的安全性,并基于此實現(xiàn)軌跡的搜索與決策。而交通車輛運動的不確定性使得上述條件不再成立。所以,即便通過碰撞概率實現(xiàn)對規(guī)劃狀態(tài)準確地危險評估,傳統(tǒng)方法的規(guī)劃機理依然不能有效地處理碰撞的概率性對搜索過程的影響,使得對不確定性的處理中一定的盲目性,從而難以保證規(guī)劃方法的性能及智能車輛的行駛安全性。針對當前研究中的不足,本文對考慮交通車輛運動不確定性的軌跡規(guī)劃問題進行了研究,主要研究內容如下:第一,本文提出了一種交通車輛運動模式辨識方法。方法建立了基于“一對多”糾錯輸出碼的辨識架構,將運動模式辨識問題轉化為若干二分類問題。隨后通過成對比較分析,建立了概率估計模型并以最小相對熵為優(yōu)化目標完成實際概率的估計,從而以多分類器取代單分類器實現(xiàn)對樣本的辨識。建立了貝葉斯推理模型以揭示連續(xù)若干概率估計結果與最終辨識模式結果的關系,從而以多樣本取代單樣本實現(xiàn)對運動模式的辨識。本文所述方法與傳統(tǒng)方法的實驗對比結果表明,所述方法能夠有效的消除單分類器以及單樣本帶來的錯誤辨識結果,從而有效地提高辨識的準確性。第二,本文提出了基于高斯過程運動模型的軌跡預測方法。首先完成運動軌跡的模式聚類并建立基于高斯過程的運動模型。在進行軌跡預測時,提出并推導了基于馬氏距離的先驗向量計算方法,從而有效的建立實時運動軌跡與運動模型之間的匹配關系。隨后推導了基于條件高斯分布的軌跡預測方法以獲得交通車輛未來運動軌跡的概率特性。實驗結果表明,所述方法能夠準確計算出先驗向量的維數,從而保證預測所得概率特性的準確性。第三,本文提出一種考慮不確定性的軌跡規(guī)劃方法。方法包括考慮汽車行駛環(huán)境特性的采樣策略以及考慮汽車運動特性的節(jié)點距離度量策略。為了在軌跡規(guī)劃過程中考慮由交通車輛運動不確定性引起的碰撞的概率性的影響,方法以碰撞概率表達對規(guī)劃狀態(tài)準確的危險評估,并將其建模為搜索樹中節(jié)點的代價,從而在規(guī)劃機理中考慮碰撞概率性的影響。以此為基礎開展搜索樹節(jié)點排序、采樣節(jié)點擴張、目標偏向擴張以及軌跡評價與決策,能夠保證不確定性下規(guī)劃方法的性能。最后,開展了多種工況下的仿真實驗:單步對比實驗表明,考慮不確定性的軌跡規(guī)劃可以實現(xiàn)更為準確的危險評估從而決策出更為安全的軌跡;動態(tài)避障實驗表明,基于準確的危險評估,規(guī)劃過程中搜索樹朝向更為安全的區(qū)域擴張,有效地消除了不確定性下規(guī)劃的盲目性、隨機性。本文基于國家自然科學基金重點項目搭建了實車實驗平臺以驗證本文研究內容和提出的方法。首先,開展了包括基于單點預瞄的路徑跟隨控制器設計以及基于預瞄加速度的速度跟隨控制器設計的研究工作。其次,為了實現(xiàn)實車實驗驗證,完成了以某型轎車為實車平臺的總體方案設計,包括平臺軟硬件架構設計,機械、通訊及供電系統(tǒng)設計,最終改裝并完成了實車平臺搭建。接著,根據實車實驗需求,對軌跡規(guī)劃、軌跡跟隨控制算法中所涉及的平臺參數進行了估計。最后,依托所搭建的平臺中對本文所涉及方法進行了驗證。實驗結果表明,本文所述方法能夠有效地提高智能車輛軌跡規(guī)劃的準確度,進而更好地保證其行駛安全性,驗證了本文所述方法的有效性。
[Abstract]:The intelligent of automobile is the key technology to deal with the problems such as safety, congestion and environmental protection in the development of automobile industry. It is also an inevitable trend of the development of automobile technology. As one of the key technologies of the intelligent vehicle, the track planning needs to carry out the accurate risk assessment of the planning state, and the running route and the speed of the vehicle are planned based on the planning state, thereby ensuring the running safety of the intelligent vehicle in the traffic environment. This requires that a reasonable prediction of the motion trajectory of the traffic vehicle must be made in the trajectory planning. However, in the case of intelligent vehicles, the future movement of the traffic vehicle is uncertain and has a certain randomness. Ignoring the uncertainty of traffic vehicle motion will result in a lack of accuracy in the risk assessment, which will affect the travel safety of the smart vehicle. Therefore, it is not only important to ignore the uncertainty of the movement, but also to obtain the accurate probability characteristic of the traffic vehicle. At the same time, the outcome of the risk assessment of certainty has also been unable to accurately reflect the safety of the planned state, and its safety can only be expressed in the form of collision probability. In order to improve the performance of the trajectory planning and to guarantee the running safety of the intelligent vehicle, the impact of the collision probability caused by the motion uncertainty of the traffic vehicle must be fully considered. The behavior-based motion model framework is an effective method for predicting the motion track of a traffic vehicle. But the driver's different driving styles have different modes of motion under the same driving behavior. If that difference is ignore, the probability characteristic of the prediction is not accurate enough. Therefore, in order to improve the accuracy of the prediction, it is necessary to establish a motion model of different modes and to realize the identification of the motion pattern. A classifier based on support vector machine is an effective method to solve the problem of identification. Traditional classifiers treat the input samples as individuals that are independent, and the results depend on the classifier's own performance and the current input samples. However, since it is difficult to acquire that internal parameters of the traffic vehicle and the driver state and the real-time data of the vehicle state by the on-vehicle sensor, the mode identification can only depend on the limited external sensing information. Therefore, it is difficult to ensure the accuracy of the single-classifier to the single-sample identification result. In the framework of the behavior-based motion model, the Gaussian process motion model is an effective method to describe the randomness of the motion of the automobile, and the motion model corresponding to the establishment of the different motion modes is the basis for realizing the track prediction of the traffic vehicle. However, the probability characteristic of the motion uncertainty of the traffic vehicle is not accurately characterized by the motion model, and the influence of the prior vector matching the real-time motion track on the probability of the prediction vector must be taken into consideration. And the motion pattern recognition only determines the motion model of the real-time track, the prior vector matched with the motion model is still unknown, and the solution to the problem in the prior research is rarely mentioned. The ability of fast search of random tree with probability completeness and fast finding feasible solution is an effective method to solve the problem of automobile track planning. The traditional research focuses on the problems such as kinematics, dynamics and real-time performance of the vehicle, and is less concerned with the influence of the traffic uncertainty of the traffic vehicles. Therefore, the traditional method generally expresses the security of the nodes in the search tree in the form of a logical judgment, and realizes the search and decision-making of the trajectory based on the method. And the uncertainty of the movement of the traffic vehicle makes the above-mentioned conditions no longer established. Therefore, even though the risk assessment of the planning state is accurately carried out by the collision probability, the planning mechanism of the traditional method can not effectively deal with the impact of the probability of the collision on the search process, so that the blindness in the processing of the uncertainty is certain, Thus it is difficult to guarantee the performance of the planning method and the running safety of the intelligent vehicle. In view of the deficiency in the current research, this paper studies the trajectory planning of the vehicle motion uncertainty, and the main contents are as follows: First, this paper presents a method for identifying the motion pattern of the traffic vehicle. Methods The recognition architecture based on the "a pair of" error correction output code was established, and the problem of identification of motion pattern was transformed into a number of two-class problems. Then, based on the comparative analysis, the probability estimation model is established and the estimation of the actual probability is completed with the minimum relative entropy as the optimization target, so that the identification of the samples is realized by the multi-classifier instead of the single classifier. A Bayesian inference model is established to reveal the relationship between the successive probability estimation results and the result of the final identification mode, so as to realize the identification of the motion mode with a variety of the substitute single samples. The experimental results of the method and the traditional method show that the method can effectively eliminate the error identification result caused by the single classifier and the single sample, thereby effectively improving the accuracy of the identification. Secondly, the paper presents a method of trajectory prediction based on the Gaussian process motion model. Firstly, the mode clustering of the motion track is completed and a motion model based on the Gaussian process is established. In the course of trajectory prediction, a priori vector calculation method based on the Markovian distance is proposed and the matching relation between the real-time motion trajectory and the motion model is effectively established. The trajectory prediction method based on conditional Gaussian distribution is then derived to obtain the probability characteristic of the future motion trail of the traffic vehicle. The experimental results show that the method can accurately calculate the dimension of the prior vector, so as to ensure the accuracy of the probability characteristic of the prediction. Thirdly, this paper puts forward a method of trajectory planning which takes into account the uncertainty. The method comprises the following steps: taking into account the sampling strategy of the vehicle running environment characteristic and the node distance measurement strategy taking into account the automobile motion characteristic. in order to consider the influence of the probability of the collision caused by the motion uncertainty of the traffic vehicle in the course of the trajectory planning, the method expresses the risk assessment of the planning state with the collision probability expression, and the model is the cost of the node in the search tree, So that the influence of the collision probability is taken into consideration in the planning mechanism. Based on this, the search tree node sort, the sampling node expansion, the target deflection expansion and the track evaluation and decision can be carried out, and the performance of the planning method under the uncertainty can be ensured. In the end, the simulation experiment under various working conditions is carried out. The single-step comparison experiment shows that the more accurate risk assessment can be realized by considering the trajectory planning of the uncertainty, so that the safer track can be determined; and the dynamic obstacle avoidance experiment shows that based on the accurate risk assessment, In the planning process, the search tree is expanded towards a more secure area, and the blindness and randomness of the planning under the uncertainty are effectively eliminated. Based on the key projects of the National Natural Science Foundation of China, a real-vehicle experimental platform is set up to verify the contents and methods of this paper. First, a design of a path following controller based on a single-point pre-scan and a research effort based on the speed of the pre-scan acceleration follow the design of the controller are performed. Secondly, in order to verify the real-vehicle experiment, the overall scheme design of a car as a real-vehicle platform is completed, including the design of the software and hardware architecture of the platform, the mechanical, the communication and the design of the power supply system, the final modification and the completion of the construction of the real-vehicle platform. Then, according to the real-vehicle experimental requirements, the platform parameters involved in the trajectory planning and track following control algorithm are estimated. Finally, the method involved in this paper is verified by the built platform. The experimental results show that the method can effectively improve the accuracy of the intelligent vehicle trajectory planning, and further ensure the running safety of the intelligent vehicle, and verify the effectiveness of the method described herein.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:U463.6

【相似文獻】

相關期刊論文 前10條

1 羅進生,張永俊;末端軌跡指定的機器人最優(yōu)二次軌跡規(guī)劃[J];機床與液壓;2002年03期

2 陶其銘,柯尊忠;機器人軌跡規(guī)劃新方法的研究[J];機床與液壓;2003年04期

3 張立勛;董玉紅;路敦民;沈錦華;;合作機器人軌跡規(guī)劃及實驗研究[J];中國機械工程;2005年22期

4 潘雙夏;季炳偉;童永峰;;基于操縱平穩(wěn)性的液壓挖掘機軌跡規(guī)劃方法[J];浙江大學學報(工學版);2006年08期

5 穆海華;周云飛;嚴思杰;韓愛國;;超精密點對點運動三階軌跡規(guī)劃精度控制[J];機械工程學報;2008年01期

6 譚崗慧子;陳勁杰;;三指仿人靈巧手軌跡規(guī)劃及仿真研究[J];機械研究與應用;2010年03期

7 鄒風山;曲道奎;徐方;;真空機器人軌跡規(guī)劃研究[J];組合機床與自動化加工技術;2011年10期

8 徐鵬飛;羅慶生;韓寶玲;姚猛;;新型工業(yè)碼垛機器人軌跡規(guī)劃研究[J];組合機床與自動化加工技術;2012年05期

9 謝志江;楊鳳杰;倪衛(wèi);熊遷;袁曉東;;潔凈精密裝校機器人的運動學分析及軌跡規(guī)劃[J];機械設計;2012年09期

10 李宇成;機器人的最優(yōu)五次多項式軌跡規(guī)劃[J];機器人;1991年S1期

相關會議論文 前10條

1 張國偉;李斌;鄭懷兵;龔海里;王聰;;乒乓球靈巧機械臂軌跡規(guī)劃[A];第九屆全國信息獲取與處理學術會議論文集Ⅰ[C];2011年

2 楊淮清;金蘭;;基于動作基元的行走軌跡規(guī)劃及其在原地轉向型機器人中的應用[A];2006中國控制與決策學術年會論文集[C];2006年

3 張濤;李則婷;陳善本;;移動焊接機器人軌跡規(guī)劃[A];第十六次全國焊接學術會議論文摘要集[C];2011年

4 郭為忠;韓波;鄒慧君;;混合輸入機構的連續(xù)軌跡規(guī)劃研究[A];全國印刷、包裝機械凸輪、連桿機構學術研討會(第6屆全國凸輪機構學術年會)論文集[C];2005年

5 馮翼;李穎;趙新;劉景泰;;足球機器人運動軌跡規(guī)劃和避障算法的設計與實現(xiàn)[A];馬斯特杯2003年中國機器人大賽及研討會論文集[C];2003年

6 許瑛;渡徍克巳;許偉;;連桿曲線的等弧長分割法在機器人軌跡規(guī)劃中的應用[A];第十四屆全國機構學學術研討會暨第二屆海峽兩岸機構學學術交流會論文集[C];2004年

7 劉新建;李迅;張彭;;雙柔性桿機械手點位運動的關節(jié)軌跡規(guī)劃[A];1997中國控制與決策學術年會論文集[C];1997年

8 崔天時;陳天宏;;基于遺傳算法的采摘機器人軌跡規(guī)劃[A];黑龍江省農業(yè)工程學會2011學術年會論文集[C];2011年

9 單恩忠;戴斌;宋金澤;孫振平;;受控動力學樣條插值方法研究[A];2009年中國智能自動化會議論文集(第一分冊)[C];2009年

10 荊懷靖;唐春英;任斐;王輝;;基于組合映射的網格曲面螺旋軌跡規(guī)劃[A];第二屆民用飛機制造技術及裝備高層論壇資料匯編(論文集)[C];2010年

相關重要報紙文章 前2條

1 譚論 哈恩晶;國外機器人“水土不服”國產機器人市場看好[N];中國工業(yè)報;2005年

2 黃柯;機器人產業(yè)躍過“臨界期” 企業(yè)摩拳擦掌[N];中國高新技術產業(yè)導報;2009年

相關博士學位論文 前8條

1 高德東;柔性針穿刺軟組織變形機理及動態(tài)軌跡規(guī)劃方法研究[D];浙江大學;2017年

2 孫浩;考慮交通車輛運動不確定性的軌跡規(guī)劃方法研究[D];吉林大學;2017年

3 禹鑫q,

本文編號:2493689


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2493689.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶99ef1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
成人精品视频在线观看不卡| 国产传媒欧美日韩成人精品| 欧美欧美欧美欧美一区| 日韩18一区二区三区| 日韩精品福利在线观看| 精品视频一区二区不卡| 精品日韩国产高清毛片| 久热99中文字幕视频在线| 久久碰国产一区二区三区| 中文字幕日韩欧美一区| 国产成人精品一区在线观看| 国产午夜福利在线免费观看| 不卡一区二区在线视频| 亚洲av日韩一区二区三区四区 | 五月婷婷综合激情啪啪| 亚洲熟妇av一区二区三区色堂 | 综合久综合久综合久久| 熟女一区二区三区国产| 国产成人精品一区在线观看| 99国产精品国产精品九九 | 亚洲欧美日韩国产成人 | 国产精品欧美激情在线| 在线视频三区日本精品| 亚洲国产丝袜一区二区三区四| 中文字日产幕码三区国产| 五月综合激情婷婷丁香| 国产不卡在线免费观看视频| 美女露小粉嫩91精品久久久| 日韩中文字幕人妻精品| 日韩欧美国产高清在线| 午夜小视频成人免费看| 麻豆精品在线一区二区三区| 久久热中文字幕在线视频| 亚洲一区二区亚洲日本| 色婷婷丁香激情五月天| 免费性欧美重口味黄色| 亚洲成人精品免费在线观看| 国产福利在线播放麻豆| 亚洲在线观看福利视频| 免费午夜福利不卡片在线 视频| 亚洲内射人妻一区二区|