天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程博士論文 >

船舶艙室的中高頻振聲仿真及傳遞路徑研究

發(fā)布時間:2019-05-29 00:25
【摘要】:隨著我國對海洋開發(fā)利用的進一步深入,運輸船舶和海洋工程裝備的動力性能逐步增強,動力裝置引起的振動和噪聲對船上人員的影響日益凸顯。IMO和各船級社都對艙室的噪聲等級做出了嚴格的限制,對船舶的設計和建造都提出了新的要求。在船舶設計階段進行振聲預報,制定有效的降噪方案,有助于從源頭控制艙室中的噪聲,避免反復試驗和改進耗費時間、人力和物資成本,降低整體費用。中高頻噪聲是艙室噪聲的主要組成部分,研究船舶系統(tǒng)的噪聲來源、傳遞路徑及控制方法,對提升船舶行業(yè)和國防工業(yè)的設計、制造水平具有重要意義。然而,由于船舶結構龐大的計算規(guī)模,對船舶的振聲仿真精度較低,迄今的研究大多停留在定性分析的階段;而中高頻振聲問題的不確定性,導致傳統(tǒng)傳遞路徑分析方法對這些頻帶的問題并不適用。這顯然無法滿足船舶工程領域減振降噪的需求,因此亟須發(fā)展新的求解方法。本文以船舶的中高頻振動和噪聲為分析對象,以降低人員生活艙室振動和噪聲為目標,改進現有的計算方法,并提出區(qū)別于傳統(tǒng)方案的中高頻振聲傳遞路徑分析方法,確定了艙室噪聲的主要來源,制定了切實可行的減振降噪方案。本文的主要研究內容和結論如下:(1)分析了中頻和高頻振聲仿真方法的求解特點和選取依據。分別采用有限元-統(tǒng)計能量分析(FE-SEA)混合法和統(tǒng)計能量分析(SEA)法求解復雜系統(tǒng)的中頻和高頻振聲問題,根據結構特征尺寸與內波長關系區(qū)分兩類方法的求解區(qū)間,并據此建立了某船的FE-SEA混合模型和SEA模型,分別用于中頻和高頻振聲問題求解。(2)提出部分FE子系統(tǒng)建模方法和局部模態(tài)參數攝動(LMP)法,提高中頻問題的求解效率。針對FE-SEA混合法求解大型存在計算效率不足的缺點,僅選取靠近振聲源艙室的部分子系統(tǒng)使用確定方法進行描述,其它次要部分結構采用統(tǒng)計方法描述,并使用LMP法分析強耦合結構之間的耦合損耗因子(CLFs),在降低中頻問題求解規(guī)模的情況下保證仿真結果的準確。(3)確定了機艙主要振聲源對人員活動艙室的貢獻量。結合臺架和實船測試數據,對200~8000 Hz頻帶的的噪聲進行了仿真,分別計算了主機、發(fā)電機組和螺旋槳振動和輻射分量在艙室中產生的噪聲。結果表明,主機和發(fā)電機組的振聲分量是噪聲的主要來源,螺旋槳的分量可以忽略。(4)提出使用圖論算法求解中高頻振聲能量的傳遞路徑。將中高頻振聲系統(tǒng)等效為圖論框架下的能量傳遞網絡:SEA子系統(tǒng)看作網絡圖的結點,而根據損耗因子能夠得到結點之間有向邊的能量傳遞權重,從而構成SEA賦權有向圖。利用圖論中的偏離算法求解源結點到目標結點權重最大的K主要路徑(KDP),即可得到中高頻振聲能量的主要傳遞路徑。最后,利用中心性測量方法評價結點在能量傳遞中的重要性,進而確定在能量傳遞中起主要作用的關鍵結構。(5)精細化路徑分析對象的選取方法,降低路徑計算的復雜度。引入振聲溫度的概念,根據子系統(tǒng)的能量、模態(tài)數和波數計算子系統(tǒng)的溫度,確定能量的單向流動,將高于目標子系統(tǒng)的局部結構作為為路徑分析對象,減少路徑分析的結點和耦合連接數目,降低計算規(guī)模。(6)基于中高頻振聲仿真和傳遞路徑制定了某船的降噪方案。在全船仿真的基礎上建立圖形網絡,求解主機和發(fā)電機組到目標艙室中的KDP,并通過中心性測量確定在能量測量中起主要作用的結構和耦合連接。結果表明,對振動影響最大的是輸入組和路徑組結點,對應主機艙和輔機艙內底以及它們之間的垂直艙壁。采用阻振質量在這些關鍵結點位置施加減振降噪措施,可使發(fā)電機組在附近人員生活艙室的噪聲降低5.59 dB(A)。本文的研究不僅解決了 FE-SEA混合法和SEA法在工程應用中存在的部分問題,而且為中高頻振聲傳遞路徑的求解提供了一種可行的解決方法。圖論算法在路徑分析中的應用,為復雜系統(tǒng)中能量傳遞路徑分析提供了巧妙的求解方案,量化了局部結構在系統(tǒng)能量傳遞中的作用,取得了一系列具有工程實用價值的結論,對船舶等復雜系統(tǒng)的噪聲設計具有一定的參考價值。
[Abstract]:With the further deepening of the development and utilization of the ocean, the dynamic performance of the ship and the offshore engineering equipment is gradually enhanced, and the vibration and noise caused by the power device are becoming more and more prominent on the personnel of the ship. IMO and the classification societies have made strict restrictions on the noise level of the cabin, and new requirements for the design and construction of the ship are put forward. In the design phase of the ship, the vibration prediction is carried out, and an effective noise reduction scheme is developed to help control the noise in the cabin from the source, so as to avoid the repeated test and improve the time, the manpower and the material cost and reduce the overall cost. The high-frequency noise is the main part of the cabin noise, and the noise source, the transmission path and the control method of the ship system are studied. It is of great significance to improve the design and manufacture level of the ship industry and the national defense industry. However, because of the large scale of the ship's structure, the accuracy of the acoustic simulation of the ship is low, and the research to date is mostly in the stage of the qualitative analysis; and the uncertainty of the high-frequency vibration problem leads to the problem of the traditional transmission and analysis method to these frequency bands and is not applicable. This obviously does not meet the requirements of vibration reduction and noise reduction in the field of ship engineering, and therefore it is urgent to develop a new solution. Based on the high-frequency vibration and noise of the ship, this paper aims at reducing the vibration and noise of the people's living cabin, improves the existing calculation method, and proposes a method for analyzing the high-frequency and high-frequency vibration transmission in the traditional scheme, and the main source of the cabin noise is determined. And a practical vibration reduction and noise reduction scheme is developed. The main research contents and conclusions of this paper are as follows: (1) The solution characteristics and the selection basis of the intermediate frequency and the high-frequency vibration sound simulation method are analyzed. A finite element-statistical energy analysis (FE-SEA) method and a statistical energy analysis (SEA) method are used to solve the problem of intermediate frequency and high-frequency vibration of a complex system. The FE-SEA hybrid model and the SEA model of a ship are set up to solve the problem of intermediate frequency and high frequency vibration respectively. (2) a partial FE subsystem modeling method and a local mode parameter perturbation (LMP) method are proposed to improve the solution efficiency of the intermediate frequency problem. The method for solving the defects of the large-scale existence calculation efficiency is solved for the FE-SEA mixing method, only a part of the sub-system close to the vibration sound source cabin is selected to be described by using a determination method, and the other secondary part structures are described by a statistical method, And the coupling loss factor (CLFs) between the strong coupling structures is analyzed by the LMP method, and the accuracy of the simulation result is ensured under the condition of reducing the solution size of the intermediate frequency problem. (3) The contribution of the main vibration source of the engine room to the personnel's active cabin is determined. Based on the test data of the gantry and the real ship, the noise in the 200-8000 Hz frequency band is simulated, and the noise generated in the cabin by the vibration and radiation components of the main engine, the generator unit and the propeller are respectively calculated. The results show that the vibration component of the host and the generator set is the main source of the noise, and the components of the propeller can be ignored. (4) The transmission path of high-frequency vibration energy is proposed by using the graph theory algorithm. The high-frequency vibration system is equivalent to the energy transfer network under the graph theory frame: the SEA subsystem is considered as the node of the network graph, and the energy transfer weight between the nodes is obtained according to the loss factor to form the SEA-weighted directed graph. The main transmission path of high-frequency and high-frequency acoustic energy is obtained by using the deviation algorithm in graph theory to solve the K main path (KDP) with the largest weight of the source node to the target node. Finally, the importance of the node in the energy transfer is evaluated by the central measurement method, and the key structure plays a key role in the energy transfer. And (5) the selection method of the refined analytic object is refined, and the complexity of the path calculation is reduced. the concept of the vibration sound temperature is introduced, the temperature of the subsystem is calculated according to the energy, the mode number and the wave number of the subsystem, the one-way flow of the energy is determined, And the calculation scale is reduced. (6) The noise reduction scheme of a ship is established based on the medium-frequency and high-frequency vibration sound simulation and transmission path. A graph network is built on the whole ship simulation, and the KDP in the host and generator set to the target cabin is solved, and the structure and the coupling connection which play a main role in the energy measurement are determined by the central measurement. The results show that the maximum impact on the vibration is the input group and the path group node, corresponding to the bottom of the main engine room and the auxiliary engine compartment and the vertical bulkhead between them. The noise reduction and noise reduction measures are applied to the position of these critical nodes by using the vibration-resistant quality, which can reduce the noise of the generator set in the nearby people's living compartment by 5.59 dB (A). The research of this paper not only solves some of the problems existing in the FE-SEA hybrid method and the SEA method in the engineering application, but also provides a feasible solution for the solution of the high-frequency and high-frequency vibration transmission path. The application of graph theory in the energy transfer of complex system provides a clever solution for energy transfer and analysis in complex system, and quantifies the function of the local structure in the energy transfer of the system, and has obtained a series of conclusions with practical value. It is of reference value to the noise design of complex system such as ship.
【學位授予單位】:大連海事大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:U661.44

【相似文獻】

相關期刊論文 前10條

1 張義民;;頻域內振動傳遞路徑的傳遞度排序[J];自然科學進展;2007年03期

2 趙薇;張義民;;具有直線與搖擺耦合運動的振動傳遞路徑系統(tǒng)的參數靈敏度分析[J];噪聲與振動控制;2008年06期

3 柳瑞鋒;周璞;王強;;傳遞路徑分析在結構設計中的應用[J];噪聲與振動控制;2012年04期

4 李傳兵;王彬星;李宏成;王月琳;鄭四發(fā);;運行工況傳遞路徑分析識別車內聲源[J];噪聲與振動控制;2013年02期

5 張義民;李鶴;聞邦椿;;基于靈敏度的振動傳遞路徑的參數貢獻度分析[J];機械工程學報;2008年10期

6 王萬英;靳曉雄;彭為;郭輝;尹燕莉;;輪胎振動噪聲結構傳遞路徑分析[J];振動與沖擊;2010年06期

7 李靜波;王宏偉;王暉;劉瀟;;基于傳遞路徑分析的正時鏈條階次噪聲優(yōu)化[J];內燃機;2013年04期

8 張磊;曹躍云;楊自春;何元安;;水下圓柱殼體結構噪聲的工況傳遞路徑分析[J];振動.測試與診斷;2012年06期

9 關偉;李俊;;傳遞路徑分析的改進方法及實車應用[J];農業(yè)裝備與車輛工程;2013年11期

10 張義民;;時域內振動與噪聲傳遞路徑系統(tǒng)的路徑傳遞度探索[J];航空學報;2007年04期

相關會議論文 前3條

1 趙彤航;宋傳學;盧炳武;;基于傳遞路徑分析的車外噪聲源識別[A];2007年APC聯(lián)合學術年會論文集[C];2007年

2 王曉峰;韓德寶;門麗杰;;有限元方法在傳遞路徑識別中的應用研究[A];第十四屆船舶水下噪聲學術討論會論文集[C];2013年

3 金鵬;段傳學;吳群力;;基于運轉工況測試條件的噪聲振動傳遞路徑分析方法[A];運輸噪聲的預測與控制——2009全國環(huán)境聲學學術會議論文集[C];2009年

相關博士學位論文 前6條

1 莫愁;傳遞路徑分析方法理論研究及其汽車降噪實踐[D];華南理工大學;2015年

2 徐猛;基于傳遞路徑分析方法的車內低頻結構噪聲識別與控制[D];天津大學;2014年

3 祖慶華;輕型客車低頻聲—固耦合噪聲傳遞路徑分析與控制[D];吉林大學;2017年

4 張文春;船舶艙室的中高頻振聲仿真及傳遞路徑研究[D];大連海事大學;2017年

5 趙薇;機械振動傳遞路徑系統(tǒng)傳遞性的研究與應用[D];東北大學;2012年

6 宋海生;基于擴展OPAX傳遞路徑方法的輕型客車振動控制研究[D];吉林大學;2012年

相關碩士學位論文 前8條

1 湯毓;基于混合傳遞路徑分析方法的低速載重貨車駕駛室振動控制研究[D];廣西科技大學;2015年

2 雷鵬;地鐵車輛車內噪聲源傳遞路徑分析研究[D];北京交通大學;2016年

3 鄭啟明;基于工況傳遞路徑分析的縫紉式訂標機振動研究[D];江南大學;2016年

4 張擰;噪聲振動傳遞路徑研究及其應用[D];北京交通大學;2015年

5 付俊涵;傳遞路徑中聲源串擾消除問題研究[D];北京交通大學;2012年

6 白海飛;動車組噪聲振動傳遞路徑測試與分析[D];北京交通大學;2016年

7 劉洪達;復雜殼體耦合系統(tǒng)載荷提取及振動特性分析[D];哈爾濱工程大學;2013年

8 龐曉柯;基于工況傳遞路徑分析的挖掘機座椅振動研究[D];山東大學;2014年

,

本文編號:2487493

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2487493.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶9d770***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com