Fresnel聚光器的優(yōu)化設(shè)計(jì)及其在聚光光伏中的應(yīng)用研究
[Abstract]:In order to improve the competitiveness of the light-gathering photovoltaic technology, the performance of the light-gathering photovoltaic product is needed to be further improved, and the power generation cost is reduced. At present, the industrial efficiency of the domestic Gain P/ Ga In As/ Ge multi-junction solar cell has reached more than 40%, but the efficiency of the concentrating photovoltaic module is far lower than that of the photovoltaic cell. The influence of various non-ideal factors is analyzed, and it is found that the condenser is one of the main sources of efficiency loss. The traditional flat-plate Fresnel condenser is mainly based on the imaging principle and the single-wavelength design, and the light-gathering effect is not ideal. (2) There is a problem that the focal spot space and the spectral distribution are not uniform, leading to the reduction of the short-circuit current, the filling factor and the photoelectric conversion efficiency of the Ga In P/ Ga In As/ Ge multi-junction cell. In order to make full use of the high efficiency of the Ga InP/ Ga In As/ Ge multi-junction cell, a condenser with excellent performance is required, thereby improving the industrialization efficiency of the light-collecting photovoltaic module. In view of the above problems, in the support of the "Key technology of the industrialization of megawatt-level high-power light-gathering compound solar cell (2011 AA050507)" of the national 863 project, this paper adopts the method of combining the theoretical analysis, the simulation calculation and the experimental research, and the design and development of the new Fresnel condenser is carried out, and the application of the new Fresnel condenser in the light-gathering photovoltaic is also carried out. And the photoelectric conversion efficiency of the light-gathering photovoltaic module is improved. The specific research results are as follows:1. The theoretical calculation model of the performance characteristic parameters of the Fresnel condenser is established. In this paper, the concept of cut-off loss is introduced, the optical loss of the Fresnel condenser is quantitatively analyzed, the factors that influence the efficiency of the light-gathering are analyzed in detail, and the theoretical calculation model of the uniformity of the focal spot is established based on the ray tracing method. An efficient and uniform light-gathering Fresnel lens for Ga In P/ Ga In As/ Ge multi-junction solar cell is designed. In this paper, the spectral response characteristics of the AMM1.5 D solar spectrum, the spectral response characteristics of each sub-cell and the refractive index dispersion curve of the lens material are comprehensively considered, and the Fresnel lens is optimized by using a combination of multi-wavelength and multi-focus. Based on the ray tracing method, the light-gathering performance of the novel lens is evaluated, and the simulation results show that the designed lens is more than 75% in the 300-1800 nm wide spectral range and the light-gathering distribution uniformity in each sub-cell spectrum response band, and the light-gathering efficiency is more than 80%; The electrical performance simulation and experimental study of the high-power-concentration photovoltaic cell were carried out. On the basis of the equivalent circuit of the multi-junction solar cell, a simplified three-dimensional distributed grid circuit model is established, and the simulation and analysis of the I-V characteristics of the multi-junction solar cell under the non-uniform light-gathering condition are realized by the method of the Lspice + Matlab. A new Fresnel lens and a Gain P/ Ga InAs/ Ge multi-junction solar cell receiving module are combined to form a high-power concentration photovoltaic cell, and the electrical performance of the high-power light-gathering photovoltaic cell is simulated and analyzed based on the established three-dimensional distributed grid circuit model and the ray tracing method. The simulation results show that the photoelectric conversion efficiency of the designed new Fresnel lens condenser photovoltaic cell is 32.4%, and the conversion efficiency of the specific point focusing Fresnel lens condenser photovoltaic cell is improved by nearly 8%. On the basis of the simulation research, an outdoor test platform is built, and the light-gathering performance of the designed Fresnel lens and the electrical characteristics of the light-collecting photovoltaic cell are actually tested. The light-gathering photovoltaic module based on the new Fresnel condenser was developed. By adding the large-diameter light guide tube device, the receiving angle of the light-collecting photovoltaic module reaches more than 1 degree, the requirement on the accuracy of the tracker is reduced, and the reliability of the module is improved. And the structure of the packaging material and the module is determined based on the heat dissipation analysis and the cost considerations. By optimizing the packaging process and controlling the installation error, the module samples were prepared, and the electrical characteristics and the temperature characteristics of the module samples were tested. The test results show that the module has good output performance, the direct irradiance is 850W/ m ~ 2, the conversion efficiency is 27.9% and the maximum output power is 89.39W; at the same time, the module can meet the actual heat dissipation demand well, and most of the day in the day. The temperature of the module is in the range of 40 to 55 DEG C, and the maximum temperature is 60.5 DEG C.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TK513.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;Design and investigation of fraction Fresnel zone plate[J];Chinese Journal of Lasers;1993年01期
2 郭豐;;聚光光伏的發(fā)展[J];電源技術(shù);2009年10期
3 周奕琛;張斌;;基于時(shí)間序列成本預(yù)測(cè)的低倍聚光光伏未來成長(zhǎng)性分析[J];中國(guó)石油和化工標(biāo)準(zhǔn)與質(zhì)量;2013年24期
4 田瑋;王一平;韓立君;劉永輝;張金利;;聚光光伏系統(tǒng)的技術(shù)進(jìn)展[J];太陽能學(xué)報(bào);2005年04期
5 ;世界上最大的聚光光伏項(xiàng)目提前動(dòng)工[J];中國(guó)電業(yè)(技術(shù)版);2011年09期
6 張志剛;;聚光光伏技術(shù)概述[J];科技傳播;2012年18期
7 李穆然;李娜;;固定式聚光光伏發(fā)電方案簡(jiǎn)介[J];太陽能;2012年14期
8 穆杰;夏宏宇;仲琳;;聚光光伏商業(yè)分析[J];電源技術(shù);2013年04期
9 穆杰;夏宏宇;仲琳;;屋頂型聚光光伏系統(tǒng)[J];太陽能;2013年13期
10 ;第二屆天津國(guó)際聚光光伏技術(shù)研討會(huì)成功召開[J];太陽能;2013年22期
相關(guān)會(huì)議論文 前7條
1 舒碧芬;沈輝;金井升;陳美園;;聚光光伏系統(tǒng)接收器優(yōu)化設(shè)計(jì)要素[A];第十屆中國(guó)太陽能光伏會(huì)議論文集:迎接光伏發(fā)電新時(shí)代[C];2008年
2 蔡明娟;何建國(guó);曹兵;;CEM中Fresnel積分的計(jì)算[A];2005'全國(guó)微波毫米波會(huì)議論文集(第三冊(cè))[C];2006年
3 王子龍;張華;張海濤;耿直;;太陽能聚光光伏電池?zé)峁芾鋮s方法分析[A];中國(guó)制冷學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
4 劉偉;楊軍;;一種基于衍射柱面波的Fresnel近似的多Gaussian波束模型[A];中國(guó)聲學(xué)學(xué)會(huì)2009年青年學(xué)術(shù)會(huì)議[CYCA’09]論文集[C];2009年
5 ;Focal performance of metallic diffractive cylindrical micromirrors designed by a monotonic-increasing-thickness model[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
6 張聰;張華;;太陽能聚光光伏系統(tǒng)散熱器設(shè)計(jì)[A];上海市制冷學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集[C];2011年
7 李燁;張華;王子龍;;高倍數(shù)碟式聚光光伏系統(tǒng)及其散熱器結(jié)構(gòu)優(yōu)化方案[A];上海市制冷學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 記者 方霞 通訊員 張文術(shù);聚光光伏行業(yè)會(huì)聚嘉興“論劍”未來[N];嘉興日?qǐng)?bào);2012年
2 本報(bào)記者 諸玲珍;聚光光伏:成本優(yōu)勢(shì)明顯 推廣仍需時(shí)日[N];中國(guó)電子報(bào);2010年
3 本報(bào)記者 張蕾;聚光光伏時(shí)代或?qū)⒌絹韀N];中國(guó)電力報(bào);2010年
4 本報(bào)記者 邢佰英;國(guó)內(nèi)最大 并網(wǎng)聚光光伏電站落成[N];中國(guó)證券報(bào);2011年
5 記者 孫玉寶;高倍聚光光伏產(chǎn)業(yè)化項(xiàng)目開工[N];安徽日?qǐng)?bào);2011年
6 通訊員 高茜;改變聚光光伏國(guó)際標(biāo)準(zhǔn)制定中國(guó)企業(yè)“失語”狀態(tài)[N];中國(guó)電力報(bào);2011年
7 記者 管晶晶;我國(guó)聚光光伏企業(yè)將參與國(guó)際標(biāo)準(zhǔn)制定[N];科技日?qǐng)?bào);2011年
8 本報(bào)記者 王海霞;聚光光伏將引領(lǐng)太陽能發(fā)電技術(shù)[N];中國(guó)能源報(bào);2011年
9 記者 陳捷;三安光電高倍聚光光伏產(chǎn)業(yè)化項(xiàng)目開工[N];上海證券報(bào);2011年
10 記者 孫玉寶;高倍聚光光伏產(chǎn)業(yè)化取得突破[N];安徽日?qǐng)?bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 付蕊;Fresnel聚光器的優(yōu)化設(shè)計(jì)及其在聚光光伏中的應(yīng)用研究[D];華北電力大學(xué)(北京);2017年
2 張博陽;液浸聚光光伏系統(tǒng)冷卻工質(zhì)二甲基硅油的光學(xué)特性研究[D];天津大學(xué);2015年
3 弭轍;高倍聚光光伏電站優(yōu)化設(shè)計(jì)[D];華北電力大學(xué)(北京);2016年
4 孫勇;線性液浸聚光光伏冷卻系統(tǒng)流動(dòng)與傳熱性能研究[D];天津大學(xué);2014年
5 謝傳梅;量子光學(xué)中與經(jīng)典Fresnel變換對(duì)應(yīng)的若干新幺正算符[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
6 王子龍;聚光光伏系統(tǒng)中太陽能電池的冷卻問題研究[D];上海理工大學(xué);2011年
7 張海燕;基于平面鏡反射的聚光光伏系統(tǒng)研究[D];合肥工業(yè)大學(xué);2012年
8 馬宏財(cái);高效能空間薄膜聚光光伏系統(tǒng)研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2013年
9 荊雷;新型Fresnel光伏聚光鏡的設(shè)計(jì)研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2012年
10 陳海飛;高倍聚光光伏光熱綜合利用系統(tǒng)的理論和實(shí)驗(yàn)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 莊琳玲;高效抑制斜入射光線Fresnel反射的擴(kuò)散器件及應(yīng)用[D];華僑大學(xué);2015年
2 代明崇;密集矩陣式聚光光伏模組散熱技術(shù)研究[D];北京工業(yè)大學(xué);2015年
3 陳創(chuàng)業(yè);聚光光伏系統(tǒng)平板型CPC聚光器光學(xué)性能研究與分析[D];云南師范大學(xué);2015年
4 汪源;聚光光伏追日控制系統(tǒng)的設(shè)計(jì)與優(yōu)化[D];江蘇大學(xué);2016年
5 金祝嶺;兩種點(diǎn)聚焦式菲涅爾聚光光伏光熱系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
6 陳毅;靜態(tài)聚光光伏系統(tǒng)的設(shè)計(jì)與實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2016年
7 李琳;CPC型聚光光伏/溫差聯(lián)合發(fā)電系統(tǒng)設(shè)計(jì)[D];東北農(nóng)業(yè)大學(xué);2016年
8 王飛;菲涅爾高倍聚光光伏光熱系統(tǒng)研究[D];內(nèi)蒙古工業(yè)大學(xué);2016年
9 秦連偉;V型聚光光伏—光催化水處理系統(tǒng)的實(shí)驗(yàn)研究[D];天津大學(xué);2015年
10 辛干超;液浸聚光光伏系統(tǒng)中Ⅲ-Ⅴ族多結(jié)太陽電池的性能研究[D];天津大學(xué);2015年
,本文編號(hào):2458620
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2458620.html