電流變液的力學(xué)性能研究及其微觀結(jié)構(gòu)研究
[Abstract]:As a typical intelligent material, the mechanical properties of the electrorheological fluid can change significantly under the applied electric field, and the change is fast and reversible. In view of this special property, the electrorheological fluid has a wide application prospect in the force-electric coupling device. Therefore, the mechanism analysis of the change of the mechanical property of the electrorheological fluid has always been the focus and difficulty in the field of current fluid-changing research. Under the effect of the applied electric field, the current-changing particles form a chain-like structure between the plates, so that the shear stress and the apparent viscosity of the electrorheological fluid are obviously increased. The relationship between the microstructure and the mechanical property in the working state of the electrorheological fluid is the key to explain the mechanism of the current transformation. Due to the limitation of the experimental conditions, the microstructure of the electrorheological particles is very difficult to be observed directly, so the simulation is an important method to study the mechanism of the rheological fluid of the current. The correctness of the calculation model is verified by the experimental phenomenon, and the phenomenon of the observation in the experiment is explained by the result of the simulation. In this paper, the mechanical properties of the electrorheological fluid at the time of compression and shearing are studied by the method of combination of experiment and calculation, and the action mechanism of the different influencing factors is explored. The specific work is as follows:1. In this paper, the variation of the normal stress in the current-changing liquid under the compression mode is studied by means of the simulation calculation of the experiment. The effect of the compression rate on the stress of the electrorheological fluid is tested by the high normal stress at the time of compression. Under the same conditions, the smaller the compression speed, the greater the normal stress of the electrorheological fluid. This is caused by the phenomenon that the particle of the electrorheological fluid is separated from the base liquid under the action of the applied electric field, the smaller the compression speed, the more obvious the phenomenon of the separation of the particles from the base liquid, and the chain structure of the current-changing particles is more stable and can bear more stress. Then, based on the dipole model, the compression model of the electrorheological fluid is put forward, and the simulation results and the experimental results are compared, and the reliability of the compression calculation model is verified. The effects of the applied electric field strength, compressive strain and shear rate on the stress of the electrorheological fluid are simulated. The shear rate is small, and the effect of shear on the stress of the electrorheological fluid is very small; with the increase of the shear rate, the normal stress of the electrorheological fluid is gradually reduced. The normal stress of the electrorheological fluid under the shearing action is the phenomenon of the oscillation change. Through the calculation of the micro-structure, it is found that the micro-structure of the current-variable particles is destroyed and the recombination is the reason of the normal stress oscillation. The effect of the dielectric loss on the mechanical properties of the rheological fluid in the shear field is studied by means of experiment and simulation. The dielectric loss performance of the titanium dioxide particles was changed by the method of ion doping. The dielectric loss spectrum of modified particles and the shear rheological curve of the electrorheological fluid were tested, and the effect of the dielectric loss on the rheological property of the rheological fluid was found. The increase of the ion doping ratio reduces the relaxation frequency and the dielectric loss of the current-variable particles, and the current-changing efficiency of the current-changing liquid is also gradually reduced. When the relaxation frequency of the particles is lower than 100 Hz, the current transformer loses the current variable effect in a certain shear rate range, and the effective working range is reduced. The effect of relaxation time in the dielectric loss on the mechanical properties of the electrorheological fluid is simulated. When the relaxation time is more than 0.01 s, the critical shear rate is reduced, and the effective working range of the current transformer is reduced, which is consistent with the conclusion in the experiment. The mechanism of the effect of the dielectric loss on the electrorheological fluid is given. The direction of the particle dipole moment and the direction of the particle chain are not uniform when the relaxation frequency is too large, so that the interaction force between the particles in the particle chain direction is weakened, and the strength of the particle chain structure is reduced even by the attractive force becoming a repulsive force. The changes of the mechanical properties of the rheological fluid under shear are simulated, and the effect of shear rate on the shear stress of the rheological fluid under different conditions is studied in combination with the experiment. The effect of volume fraction, electric field strength and shear rate on the mechanical properties of the electrorheological fluid is studied by using the calculation model based on the dipole-polarization theory. The effect of the shear rate on the mechanical properties of the electrorheological fluid is explained by the calculation of the two-dimensional simulation and the microstructure under the steady-state shear. In this paper, three different states of shear rate on the shear stress of current-varying fluid are found, and the simulation results are verified. The mechanism of the effect of shear rate on the mechanical properties of the electrorheological fluid under different conditions is explained by the calculated microstructure evolution: under the low shear rate, the particle chain structure is inclined to the shearing direction, and the shear stress is increased with the increase of the shear rate; at the moderate shear rate, the structure of the particle chain is in a dynamic equilibrium state of destruction and recombination, and the shear stress changes with time; under the high shear rate, the current variable reaches the shear yield state, the chain structure is completely destroyed, the influence of the electric field on the shear stress is weak, The shear stress of the electrorheological fluid is dominated by the force of the liquid, showing the properties of the Bingham fluid.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB381
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尹劍波;一種新型材料——電流變液的研究現(xiàn)狀及應(yīng)用[J];江蘇化工;2000年07期
2 何峰,張正義,汪武祥,韓雅芳,肖耀福,王潤(rùn);新型材料一電流變液[J];功能材料;2001年01期
3 許素娟,王彪,門守強(qiáng),陸坤權(quán);電流變液材料研究進(jìn)展[J];宇航材料工藝;2001年02期
4 龔烈航,崔占山;電流變液機(jī)理及其研究現(xiàn)狀[J];潤(rùn)滑與密封;2002年01期
5 龔裂航,李忠國(guó) ,陸國(guó)勝 ,韓壽松;電流變離合器用電流變液探討[J];液壓氣動(dòng)與密封;2002年03期
6 李斌,楊智春,張開(kāi)達(dá);電流變液力學(xué)特性的實(shí)驗(yàn)研究[J];機(jī)械科學(xué)與技術(shù);2003年03期
7 周文管,王喜順;影響電流變液流變特性的因素[J];塑料;2003年04期
8 ;新型電流變液研制成功[J];發(fā)明與創(chuàng)新;2004年01期
9 龐雪蕾,唐芳瓊;電流變液體的研究進(jìn)展[J];化學(xué)進(jìn)展;2004年06期
10 鄭雁軍,崔立山;電流變液機(jī)理和材料的研究[J];保定師范?茖W(xué)校學(xué)報(bào);2005年02期
相關(guān)會(huì)議論文 前10條
1 張建衛(wèi);黎文峰;李甲兮;;電流變液的連續(xù)性動(dòng)力學(xué)方法研究[A];第七屆全國(guó)液體和軟物質(zhì)物理學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2010年
2 鄭華文;吳張永;唐向陽(yáng);楊用;;電流變液的流變特性分析和研究[A];第一屆全國(guó)流體動(dòng)力及控制工程學(xué)術(shù)會(huì)議論文集(第二卷)[C];2000年
3 田煜;孟永鋼;溫詩(shī)鑄;;溫度對(duì)基于沸石和硅油的電流變液性能的影響[A];第七屆全國(guó)摩擦學(xué)大會(huì)會(huì)議論文集(一)[C];2002年
4 龔裂航;李忠國(guó);陸國(guó)勝;韓壽松;;電流變離合器用電流變液探討[A];第二屆全國(guó)流體傳動(dòng)及控制工程學(xué)術(shù)會(huì)議論文集(第一卷)[C];2002年
5 劉剛;李釅;;電流變液及其在航空中的應(yīng)用[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年
6 劉雪輝;郭建軍;程昱川;許高杰;崔平;;熱處理對(duì)鈦酸鈣體系電流變液的影響[A];第七屆全國(guó)液體和軟物質(zhì)物理學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2010年
7 張建華;陶德華;張毅;張直明;;電流變液的工程應(yīng)用[A];第六屆摩擦學(xué)工礦企業(yè)潤(rùn)滑技術(shù)工業(yè)應(yīng)用學(xué)術(shù)年會(huì)論文集[C];1998年
8 張賀;魏雪霞;;電流變液智能材料力學(xué)行為的理論研究[A];北京力學(xué)會(huì)第11屆學(xué)術(shù)年會(huì)論文摘要集[C];2005年
9 張敏梁;田煜;孟永鋼;溫詩(shī)鑄;;電流變液的小應(yīng)變拉伸彈性模量[A];第八屆全國(guó)摩擦學(xué)大會(huì)論文集[C];2007年
10 程杰;酈光明;許滄粟;;改性電流變液的制備和性能測(cè)試[A];山東汽車工程學(xué)會(huì)第九次學(xué)術(shù)年會(huì)優(yōu)秀論文集[C];2007年
相關(guān)博士學(xué)位論文 前10條
1 范吉軍;電流變液微波穿透可調(diào)控行為特征[D];西北工業(yè)大學(xué);2002年
2 李叢;巨電流變液的非平衡態(tài)結(jié)構(gòu)研究[D];復(fù)旦大學(xué);2012年
3 江艷萍;甲基丙烯酸烷基酯改性的納米二氧化鈦電流變體系的構(gòu)建、性能研究及在電泳顯示中的應(yīng)用[D];天津大學(xué);2014年
4 王志遠(yuǎn);電流變液的力學(xué)性能研究及其微觀結(jié)構(gòu)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
5 丁律輝;電流變液聲傳播機(jī)理及特性研究[D];華中科技大學(xué);2010年
6 張敏梁;電流變液力學(xué)性能研究[D];清華大學(xué);2009年
7 彭杰;電流變液及屈服應(yīng)力流體動(dòng)力學(xué)分析[D];清華大學(xué);2002年
8 路軍;聚芳香胺/蒙脫土納米復(fù)合材料電流變液的制備及性能研究[D];西北工業(yè)大學(xué);2003年
9 鄭玲;電流變材料及減振控制研究[D];重慶大學(xué);2005年
10 唐宏;電流變液體的聲學(xué)及振動(dòng)控制行為研究[D];西北工業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 方振南;顆粒浸潤(rùn)性對(duì)膠體電流變液性質(zhì)影響的研究[D];復(fù)旦大學(xué);2009年
2 高秀敏;電流變液微波、光學(xué)性質(zhì)及其結(jié)構(gòu)演化特征[D];西北工業(yè)大學(xué);2003年
3 袁偉;多場(chǎng)耦合作用下電流變液的動(dòng)力學(xué)特性模擬研究[D];湘潭大學(xué);2012年
4 康雨寧;納米纖維素對(duì)二氧化鈦電流變液的性能改善研究[D];東北林業(yè)大學(xué);2015年
5 藺彥梅;聚苯胺/BaTiO_3包覆粉煤灰漂珠復(fù)合材料的制備及其電流變性能的研究[D];西安建筑科技大學(xué);2015年
6 霍爽;TiO_2尿素及TiO_2/氧化石墨烯核殼型電流變液的制備及性能比較[D];大連理工大學(xué);2015年
7 沈超;凝膠態(tài)電流變彈性體的制備及性能研究[D];大連理工大學(xué);2015年
8 楊惠;顆粒表面形貌對(duì)電流變液性能影響的機(jī)理研究[D];大連理工大學(xué);2015年
9 陳雨露;中空TiO_2微球的制備及其電流變性能研究[D];青島科技大學(xué);2016年
10 田曉莉;多級(jí)結(jié)構(gòu)納米復(fù)合電流變顆粒的制備及其性能研究[D];青島科技大學(xué);2016年
,本文編號(hào):2455747
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2455747.html