大豆蛋白凝膠結(jié)構(gòu)與非網(wǎng)絡蛋白擴散行為或網(wǎng)絡蛋白性質(zhì)關系的研究
[Abstract]:Gelatin is one of the most outstanding functional properties of the soybean protein, which is the function of the food system's contribution to elasticity, hardness, water-holding property and flavor component retention. At present, the gel-type soybean protein is widely used in the products such as meat products, bean curd, minced fish products and the like. To understand the gel structure, to understand the relationship between the structure and properties of the gel, the development and application of the gel-type soybean protein product are both theoretical and practical. Based on the determination of the composition of the network protein and the non-network protein in the soybean protein gel, the gel network structure was characterized by studying the diffusion behavior of the non-network component and the properties of the texture, the rheological and the microstructure of the gel, and the composition of the protein was also determined. The change of the interaction force between the concentration of the network protein and the network protein reveals the cause of the change of the gel network structure. First, the non-network protein and the network protein in the gel were separated by the diffusion method, and the composition and the existing form of the two kinds of proteins were analyzed by different electrophoretic techniques. The non-network protein in the soy protein gel, which was formed by heating for 30 min at a concentration of 0.1 mol/ L and at 95.degree. C. with an 18% (w/ v) protein solution, was represented by a peptide chain of 11S and a chymotrypsin inhibitor (BBI), in addition to a small amount of 7S-1. ', sub-subunit. in which the B-chain is present in the form of AB and A5B3; in addition to these two forms, the peptide chain also contains the form of monomers, dimers, trimers, and polymers; and the BBI is present in the form of a monomer. In order to study the network protein composition, the network protein in three kinds of protein gel was analyzed in the paper. Of which, 7S-1, 1' the subunits are involved in the gel network structure by forming aggregates and multimers; the 7s-subunits are in the form of aggregates that are involved in the gel network structure, The 11SB peptide chain may be incorporated into the gel network in the form of monomers, dimers, polymers, aggregates, and the like. On this basis, the relationship between the non-network protein's diffusion behavior and the change of the gel structure was studied, and the reason of the change of the gel network structure was revealed by analyzing the composition and the content of the non-network protein and the network protein. The analysis of exclusion chromatography showed that the non-network protein was composed of three parts, and the relative molecular weight was 253.9, 42.8 and 9.7kDa, respectively. The diffusion of the three components in the initial stage was in accordance with the Fick's second law. The increase in protein concentration or prolonged heating time during the preparation of the gel may result in a decrease in the non-network protein diffusion coefficient. The relationship between the diffusion coefficient and the relative molecular mass is a power-order function, wherein the value of the characteristic index factor is increased with the increase of the concentration of the protein, the heating time is prolonged, and the gel network structure tends to be compact. The results of the analysis of electrophoresis and protein concentration show that the degree of denaturation of 11S protein and the increase of the content of the network protein are the cause of the dense structure of the gel network. The effect of the ratio of 7S/ 11S and the salt concentration on the structure of the gel was further investigated by the study of the diffusion of the exogenous molecular probe, and the results of the diffusion experiment were verified by the scanning electron microscope. In the protein gel prepared under the same condition, the greater the relative molecular mass of the probe and the smaller the diffusion coefficient of the relative molecular mass of the probe, the greater the relative molecular mass of the probe in different protein gels, the more sensitive the diffusion of the probe to the gel network structure. the diffusion coefficient of the probe in the gel is increased with the increase of the concentration of the salt ions or the 11S ratio in the total protein; the scanning electron microscope data show that as the concentration of the salt or the 11S ratio increases, the pore of the gel network structure becomes large, the distribution of the protein aggregates is not uniform, resulting in an easy diffusion of the probe in the network structure. The type and size of the intermolecular force in the gel network protein were characterized by measuring the dissolution rate of the gel in the SDS solution or SDS and the DTT mixed solution, and compared with the determination result of the gel breaking force. The results showed that both the hydrophobic, hydrogen bond interaction and the disulfide bond were involved in the formation of the network structure of the soybean protein gel; the change of the strength of the acting force was positively related to the change of the gel breaking force. As the 11S ratio in the total protein is increased or the heating temperature is increased, the hydrophobic, hydrogen bond interaction and the disulfide bond in the gel are enhanced, the value of the gel breaking force is gradually increased, and as the heating time is prolonged, The interaction between the network protein molecules and the gel breaking force exhibit a tendency to decrease after the first increase. In addition, the effect of the heating temperature on the three forces was found to be the largest, and the change of the heating temperature was more significant to the gel breaking force. The relationship between the elastic modulus of the soybean protein gel and the non-network protein, the content of the network protein and the size of the protein aggregates was studied. The non-network protein in the gel was removed by the diffusion method, and the elastic modulus of the gel before and after removal was measured, and the non-network protein was found to have no contribution to the elastic modulus of the gel. As the temperature of the heating increases, the degree of denaturation of the 11S protein increases, and the ratio of the network protein to the total protein is increased, resulting in an exponential increase in the elastic modulus of the gel. The effect of the salt ion concentration and the ratio of 7S/ 11S on the elastic modulus of the gel is not entirely dependent on the total protein ratio of the network protein, at which point the elastic modulus of the gel is positively related to the average particle size of the protein aggregate.
【學位授予單位】:江南大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TS201.21
【相似文獻】
相關期刊論文 前10條
1 馮劍;黃永民;劉洪來;;凝膠網(wǎng)絡中溶劑性質(zhì)的分子動力學模擬[J];化工學報;2007年05期
2 楊修造;;硅酸水凝膠網(wǎng)絡顯微研究初步[J];安徽師大學報(自然科學版);1986年04期
3 黃健;黃志明;包永忠;單國榮;翁志學;;非離子型凝膠球在水中的溶脹行為[J];高;瘜W工程學報;2006年06期
4 王宇新,王世昌,余國琮;凝膠萃取過程中的溶質(zhì)分配和凝膠滯脹[J];天津大學學報;1991年03期
5 張高奇,周美華,馬敬紅,梁伯潤;1、4-聚丁二烯凝膠網(wǎng)絡中的溶質(zhì)擴散動力學研究[J];東華大學學報(自然科學版);2003年06期
6 閻立峰,陳文明,趙秉熙,李喜青;輻射法合成凝膠對高分子網(wǎng)絡結(jié)構(gòu)的探討[J];高分子材料科學與工程;1999年06期
7 黎甜楷,趙為,王令萱,張寶文,曹怡;雙(2,4,6-苯三酚)方酸摻雜的SiO_2凝膠薄片的制備及其光物理性能(英文)[J];感光科學與光化學;1998年04期
8 劉東州;趙昨非;王海軍;;A_a型反應體系中凝膠網(wǎng)絡結(jié)構(gòu)參數(shù)的標度研究[J];河北大學學報(自然科學版);2008年03期
9 王海軍,呂中元,黃旭日,李澤生;A_f型自由基均聚反應的固化理論(Ⅱ)──凝膠網(wǎng)絡的結(jié)構(gòu)參數(shù)[J];高等學校化學學報;1998年10期
10 吳奇,汪曉輝,高均;激光光散射研究聚(N-異丙基丙烯酰胺)單鏈及其智能凝膠微球在水中的相變(下)[J];高分子通報;1998年04期
相關會議論文 前10條
1 周超;袁洋;姜華;姚芳;張奧開;付國東;;具有精確分子結(jié)構(gòu)高性能凝膠網(wǎng)絡的制備及研究[A];2013年全國高分子學術論文報告會論文摘要集——主題F:功能高分子[C];2013年
2 鄒嘉佳;楊卓;游峰;陳光順;郭少云;;PVC/TOTM(100/70)體系動態(tài)流變行為的溫度響應[A];中國化學會第28屆學術年會第18分會場摘要集[C];2012年
3 鄒嘉佳;游峰;蘇琳;楊卓;陳光順;郭少云;;PVC增塑體系溫度依賴性的動態(tài)流變學表征[A];中國流變學研究進展(2010)[C];2010年
4 尹屹梅;張洪斌;;典型多糖溶膠-凝膠轉(zhuǎn)變和凝膠機理的電化學表征[A];2007年全國高分子學術論文報告會論文摘要集(下冊)[C];2007年
5 孫平川;王亦農(nóng);馬建標;黎明;何丙林;金慶華;郭振亞;丁大同;;交聯(lián)共聚凝膠中大分子網(wǎng)絡鏈運動與纏結(jié)的NMR研究[A];第九屆全國波譜學學術會議論文摘要集[C];1996年
6 馬杰;;新興大豆蛋白食品[A];北京食品學會1982年年會論文(摘要)[C];1982年
7 溫光源;胡小中;;新興大豆蛋白制品的營養(yǎng)、功能特性及應用[A];中國糧油學會第二屆學術年會論文選集(綜合卷)[C];2002年
8 張玉琴;;利用大豆蛋白強化油炸方便面的研究[A];北京食品學會青年科技論文集[C];1992年
9 鄭二麗;吳娜娜;楊曉泉;;良好風味大豆蛋白的制備研究[A];2010年中國農(nóng)業(yè)工程學會農(nóng)產(chǎn)品加工及貯藏工程分會學術年會暨華南地區(qū)農(nóng)產(chǎn)品加工產(chǎn)學研研討會論文摘要集[C];2010年
10 郭鳳仙;李偉偉;熊幼翎;陳潔;;貯藏條件對豆粉中油脂及大豆蛋白穩(wěn)定性的影響[A];中國食品科學技術學會第八屆年會暨第六屆東西方食品業(yè)高層論壇論文摘要集[C];2011年
相關重要報紙文章 前10條
1 萬建文;我國大豆蛋白開發(fā)前景可觀[N];今日信息報;2005年
2 本報記者 祝松;大豆蛋白可保護心臟健康[N];中國食品質(zhì)量報;2005年
3 陳軍梅;舒萊倡導大豆蛋白保健康[N];中國質(zhì)量報;2007年
4 劉偉 魏傳民;聊城局開拓大豆蛋白出口市場[N];中國國門時報;2006年
5 記者 范建;方便面吃多了想換口味 大豆蛋白營養(yǎng)餐鉆空子[N];科技日報;2006年
6 金訊;大豆蛋白行業(yè)發(fā)展前景“柳暗花明”[N];糧油市場報;2006年
7 李錦華;大豆蛋白為百姓營養(yǎng)健康帶來福音[N];消費日報;2006年
8 任重;大豆蛋白市場群雄爭霸[N];中國商報;2006年
9 記者 林琳邋實習生 景巖;陜加合作建設萬噸大豆蛋白深加工項目[N];陜西日報;2007年
10 雷收麥;普及大豆蛋白知識惠及民生[N];中國商報;2007年
相關博士學位論文 前10條
1 吳超;大豆蛋白凝膠結(jié)構(gòu)與非網(wǎng)絡蛋白擴散行為或網(wǎng)絡蛋白性質(zhì)關系的研究[D];江南大學;2017年
2 田琨;大豆蛋白的結(jié)構(gòu)表征及應用研究[D];復旦大學;2010年
3 楊娟;特殊人群專用大豆蛋白配料制備及其營養(yǎng)功效評價[D];華南理工大學;2015年
4 郭鳳仙;大豆蛋白在貯藏過程中品質(zhì)下降機制及控制途徑[D];江南大學;2015年
5 王鑫;用于生物醫(yī)用材料的大豆蛋白仿真制備研究[D];東北農(nóng)業(yè)大學;2014年
6 崔竹梅;大豆蛋白—蘆丁復合乳狀液的穩(wěn)定性及其對β-胡蘿卜素緩釋效應的研究[D];江南大學;2016年
7 李偉偉;高乳化性大豆蛋白的制備及其界面流變性質(zhì)的研究[D];江南大學;2017年
8 潘明U,
本文編號:2380081
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2380081.html