曲面拋光平臺幾何誤差分析與補償研究
[Abstract]:Optical surface parts are widely used in the fields of national defense, aerospace, biomedicine and so on. Because of its special geometric characteristics, hard and brittle material properties and high surface precision, the precision of machining equipment is required harshly. How to achieve high precision, high efficiency and low cost of optical surface machining has caused the deep research of domestic and foreign scholars. Because geometric error is the main error source of machine tool error, it is very important to improve the machining accuracy of optical curved surface parts by analyzing the geometric error of optical surface machining platform and compensating it. This paper is supported by the National key basic Research and Development Program (973 Program) project "basic Research on Optical Free Surface Manufacturing", a subproject "physical Analysis and Reconstruction Strategy of Optical Free Surface forming process" (Project number 2011CB706702). Taking the four-axis polishing platform as the research object, the geometric error detection, modeling and compensation theory of the four-axis polishing platform, including the rotating axis, are systematically studied. The multi-body system theory and the differential transformation matrix are used to model the synthetic error respectively. Finally, the compensation value of the surface machining trajectory is obtained to reduce the geometric error. The relative position relationship between moving parts of moving axis and original parts is characterized under the influence of geometric errors, and the homogeneous coordinate transformation matrix between moving parts and theoretical positions of moving parts of moving axes is finally obtained under the influence of geometric errors. The geometric errors of the four-axis polishing platform were measured with Renishaw laser interferometer. The errors between axes, alignment errors, straightness errors, pitch and deflection angle errors and rotation axis positioning errors were obtained respectively. On this basis, the model of geometric error is established by using the theory of multi-body system. The thermal error is separated from the geometric error by means of multiple measurements and polynomial fitting, and the thermal error is eliminated from the measured data. The geometric error distribution after separation is studied, and the random error is eliminated by calculating the mathematical expectation. Finally, the real geometric error measurement data are obtained. The discrete measurement data are characterized by NURBS curve, and the NURBS error curve, which meets the precision requirement and has less data, is obtained after optimization, which can be used in the research of error compensation. The synthetic error compensation algorithm of four-axis polishing platform is studied by using multi-body system theory and Newton iteration method. The kinematics model of the experimental platform considering geometric errors is established. The nonlinear coupling characteristics of the transformation matrix from tool coordinate system to workpiece coordinate system are analyzed. Newton iteration method is used to solve the nonlinear equations. By using the Jacobian matrix of the theoretical kinematics model instead of the Jacobian matrix considering the geometric error kinematics model, the solving process is simplified and the computational efficiency is improved. Because the Newtonian iterative error compensation method based on the theory of multi-body system is unstable in calculation and is not convenient for on-line real-time compensation, a comprehensive error modeling and compensation method based on differential matrix is proposed in this paper. The differential transformation matrix of the moving axes relative to the workpiece coordinate system is established, and the change of the tool path under the influence of geometric errors is obtained. The geometric error compensation value is calculated by using the pseudo inverse matrix of Jacobian matrix. Compared with Newton iteration method, the proposed differential method is convenient to realize real-time error compensation.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TH74
【相似文獻】
相關期刊論文 前10條
1 粟時平,李圣怡,王貴林;三軸機械幾何誤差辨識新方法的研究[J];中國機械工程;2002年21期
2 張沖;張東升;陶濤;梅雪松;;西門子840D/810D幾何誤差補償研究[J];機械工程師;2011年01期
3 高秀峰;劉春時;李焱;林劍峰;;立式雙擺角銑頭幾何誤差數(shù)學建模與解耦研究[J];制造技術與機床;2011年12期
4 高秀峰;劉春時;李焱;林劍峰;;雙軸轉臺幾何誤差數(shù)學建模與解耦研究[J];制造技術與機床;2012年01期
5 黃祥;;基于改進單純形法的零件幾何誤差評定[J];井岡山大學學報(自然科學版);2013年03期
6 朱民生;滾刀幾何誤差分析與計算[J];機床;1985年05期
7 趙耀軍;數(shù)控車床的幾何誤差[J];淮南礦業(yè)學院學報;1993年02期
8 袁慧坤;合成孔徑旁視雷達圖象幾何誤差的校正[J];光學學報;1984年08期
9 陳志祥;機床導軌幾何誤差激光測量方法的研究[J];華中工學院學報;1984年06期
10 賴喜德;大型葉片五軸聯(lián)加工的幾何誤差控制(英文)[J];四川工業(yè)學院學報;2003年01期
相關會議論文 前3條
1 粟時平;李圣怡;王貴林;;三軸機械幾何誤差辨識新方法的研究[A];面向21世紀的生產工程——2001年“面向21世紀的生產工程”學術會議暨企業(yè)生產工程與產品創(chuàng)新專題研討會論文集[C];2001年
2 沈金華;楊建國;王正平;;基于LDDM的數(shù)控機床幾何誤差高效辨識[A];2005年中國機械工程學會年會論文集[C];2005年
3 江游;方向;張小華;丁傳凡;;幾何誤差對四極桿質量分析器分辨率的影響[A];2007'儀表,自動化及先進集成技術大會論文集(一)[C];2007年
相關博士學位論文 前6條
1 鄒華兵;微V槽超精密機床幾何誤差建模及補償算法的研究[D];廣東工業(yè)大學;2015年
2 郭崇穎;復雜產品幾何誤差評定與裝配精度預測研究[D];北京理工大學;2015年
3 趙幗娟;曲面拋光平臺幾何誤差分析與補償研究[D];吉林大學;2017年
4 劉煥牢;數(shù)控機床幾何誤差測量及誤差補償技術的研究[D];華中科技大學;2005年
5 李小力;數(shù)控機床綜合幾何誤差的建模及補償研究[D];華中科技大學;2006年
6 范開國;數(shù)控機床多誤差元素綜合補償及應用[D];上海交通大學;2012年
相關碩士學位論文 前10條
1 張玉;新GPS下幾何誤差評定優(yōu)化算法的研究[D];河北聯(lián)合大學;2014年
2 Azamat Arynov;臥式三軸數(shù)控機床的幾何誤差建模與補償[D];上海交通大學;2015年
3 黃克;基于檢驗試件的五軸機床幾何誤差分析與精度預測研究[D];電子科技大學;2015年
4 吳石磊;重型立式車銑復合加工中心幾何誤差檢測方法研究[D];哈爾濱工業(yè)大學;2015年
5 王一飛;重型機床裝配的多柔體模型及其誤差算法[D];哈爾濱理工大學;2015年
6 徐健;基于特征樣件機床幾何誤差分離的在機測量技術研究[D];哈爾濱理工大學;2016年
7 王濤;五軸數(shù)控機床旋轉軸幾何誤差辨識及補償研究[D];南京航空航天大學;2016年
8 李鵬躍;AH130數(shù)控銑鏜床幾何誤差測量及補償方法研究[D];大連理工大學;2015年
9 金瑤;幾何誤差檢測平臺的建立與研究[D];安徽農業(yè)大學;2016年
10 馬禮鵬;多軸數(shù)控機床加工系統(tǒng)仿真研究[D];沈陽工業(yè)大學;2017年
,本文編號:2345229
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2345229.html