無(wú)導(dǎo)葉對(duì)轉(zhuǎn)渦輪高壓級(jí)動(dòng)葉換熱特性的研究
[Abstract]:Because of its potential advantages in improving the ratio of thrust to weight, the unguided vane pair turbine will play an important role in the future high performance propulsion system. According to the characteristics of aerodynamic layout, the unguided vane has the characteristics of high load and high reactivity to the rotating turbine high pressure stage. In this case, the expansion degree of the airflow in the high pressure turbine stage is very high. The relative Mach number of the outlet will reach 1.3-1.5. The high acceleration of the airflow and the associated shock wave structure will have an important influence on the heat transfer characteristics of the moving blade surface. In order to study the heat transfer characteristics of rotating turbine high pressure stage moving vane without guide vane, a double side thin film heat flow meter suitable for rotating measurement is developed in this paper, and a high speed rotating dynamic measuring system is constructed. The design and rotation measurement method of thin film heat flow meter are developed. On the basis of the above work, the high-speed rotating heat transfer test of full-size non-guide vane rotating turbine was carried out on the (IET) short-period turbine test-bed of the Institute of Engineering Thermal Physics of the Chinese Academy of Sciences. Combined with the experimental results and CFD, the heat transfer characteristics of the unguided vane counterrotating turbine high pressure moving vane at different inlet Reynolds numbers were studied. The main contents and conclusions of this paper are as follows: 1. The effect of film thickness on the performance of thin film heat flux meter is analyzed systematically. It is shown that the increase of film thickness is helpful to improve SNR, but the uncertainty of high frequency heat flux is increased. In this paper, a dynamic calibration method based on system identification theory is proposed, which can effectively reduce the effect of film thickness increase on the results of high frequency heat flux. Based on the magnetron sputtering technology, a double-sided thin film heat flux meter is developed, and a complete design, fabrication and calibration method is formed. At the same time, a high-speed rotating dynamic measurement system is constructed based on the digital telemetry technology. On this basis, a suitable rotation measurement method is developed. Practice shows that the whole rotating measurement system is reliable and all parameters can meet the practical application requirements. 3. Based on the results of full-scale high-speed rotating heat transfer test and CFD, the static heat transfer characteristics of the high pressure rotor blades of a turbine with no guide vane are analyzed. It is found that the suction surface airflow accelerates extremely quickly. The local acceleration coefficient K will exceed 3 脳 10 ~ (-6), and the boundary layer has the condition of "relayer fluidization". Under the strong acceleration of airflow, the blade surface boundary layer is maintained as laminar flow boundary layer in most areas of suction surface, which leads to the decrease of blade surface heat transfer from the front edge to the thickening of the boundary layer. In the latter half of the suction surface, the oblique shock projected from the tail edge of the adjacent blade interferes with the blade surface and results in the separation of the boundary layer, which directly contributes to the boundary layer transition from laminar flow to turbulence, that is, "separation transition", in which the heat transfer on the blade surface increases sharply. At the same time, with the increase of inlet Reynolds number, the heat transfer on the surface of suction surface will be enhanced as a whole, especially for turbulent boundary layer after separation transition, the enhancement effect of heat transfer is more obvious. Based on the results of full-scale high-speed rotating heat transfer test, the dynamic heat transfer characteristics of the high pressure rotor blade of a turbo with no guide vane are studied. It is found that in front of the suction, the dynamic heat transfer characteristics of the rotor blade are studied. The heat transfer of the blade surface shows obvious periodic pulsation with the passage of the upstream guide vane wake. With the wake moving downwards, the local turbulence caused by the wake gradually widens, and the heat transfer in the second half of the blade continues to increase because of the wake, but the periodic pulsation will be weakened. In the latter half of the suction surface, the heat transfer on the blade surface is affected not only by the upstream wake, but also by the downstream blade row. At the same time, with the increase of inlet Reynolds number, the pulsation amplitude of unsteady heat transfer on the suction surface blade surface will be reduced as a whole.
【學(xué)位授予單位】:中國(guó)科學(xué)院工程熱物理研究所
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:V231.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李向陽(yáng);成文俊;趙永杰;楊琳梅;;高溫高速氣體射流沖擊傾斜平板的換熱特性研究[J];機(jī)電設(shè)備;2011年04期
2 楊震;趙振興;郭琴琴;劉宏;曹子棟;;煤粉加壓氣化爐對(duì)流段換熱特性試驗(yàn)[J];重慶大學(xué)學(xué)報(bào);2011年10期
3 葛夢(mèng)然;閆柯;高軍;葛培琪;;空間錐形螺旋彈性管束換熱特性數(shù)值分析[J];石油機(jī)械;2011年11期
4 李葉;劉圣春;饒志明;楊旭凱;;冰漿儲(chǔ)存與融化及流動(dòng)換熱特性研究現(xiàn)狀及展望[J];低溫與超導(dǎo);2012年11期
5 韓雅慧;;氣體壓力對(duì)氣流沖擊平板換熱特性的影響研究[J];制造業(yè)自動(dòng)化;2012年24期
6 劉東;蔣斌;陳飛;;微方肋冷卻系統(tǒng)的換熱特性[J];強(qiáng)激光與粒子束;2013年02期
7 常海萍,,黃太平,陳萬(wàn)兵;渦輪葉片與輪盤(pán)間樅樹(shù)型榫頭間隙中的流動(dòng)與換熱特性試驗(yàn)研究[J];TRANSACTIONS OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS;1995年01期
8 杜東興,李志信,過(guò)增元,岳敏;微細(xì)光滑管內(nèi)可壓縮流動(dòng)換熱特性的數(shù)值研究[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年11期
9 莊正寧,唐桂華,朱長(zhǎng)新;不凝氣體存在時(shí)水平管束冷凝換熱特性的試驗(yàn)研究[J];西安交通大學(xué)學(xué)報(bào);2000年07期
10 翁錦萍,魏琪,吳志剛;兩相閉式熱虹吸管換熱特性的數(shù)值模擬[J];節(jié)能技術(shù);2000年01期
相關(guān)會(huì)議論文 前10條
1 董志銳;劉松齡;張玉金;許都純;游紹坤;楊林;;渦輪葉柵端壁區(qū)的流動(dòng)和換熱特性試驗(yàn)研究[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊(cè))[C];1999年
2 李汶蔚;孫立成;李勇;;豎直管內(nèi)蒸汽冷凝強(qiáng)化換熱特性研究[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告(第二卷)——中國(guó)核學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集第3冊(cè)(核能動(dòng)力分卷(下))[C];2011年
3 徐紹琨;陳寶明;汲水;;小尺度流道換熱器換熱特性的實(shí)驗(yàn)研究[A];山東省暖通空調(diào)制冷2007年學(xué)術(shù)年會(huì)論文集[C];2007年
4 張圓圓;姬長(zhǎng)發(fā);毋震;;酒窩板換熱器換熱特性的實(shí)驗(yàn)研究[A];第二屆中國(guó)西部綠色低碳節(jié)能減排及可再生能源技術(shù)研討會(huì)論文集[C];2010年
5 黃翔超;丁國(guó)良;胡海濤;高屹峰;;R410A—油混合物在5mm光管內(nèi)冷凝換熱特性的實(shí)驗(yàn)研究[A];上海市制冷學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
6 劉家琛;巨永林;;低溫絕熱管內(nèi)液氮兩相流動(dòng)換熱特性研究[A];上海市制冷學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文集[C];2013年
7 張宗衛(wèi);朱惠人;趙曙;郭濤;;射流、旋流、出流共同作用下矩形通道換熱特性研究[A];中國(guó)航空學(xué)會(huì)第七屆動(dòng)力年會(huì)論文摘要集[C];2010年
8 寧?kù)o紅;劉圣春;彭苗;李惠宇;;R290管內(nèi)凝結(jié)換熱特性與凝結(jié)機(jī)制分析[A];第十屆海峽兩岸冷凍空調(diào)技術(shù)研討會(huì)論文集[C];2011年
9 雷菲寧;徐小煒;蘇亞欣;;結(jié)構(gòu)參數(shù)對(duì)內(nèi)置式PV-Trombe墻內(nèi)換熱特性影響[A];高等學(xué)校工程熱物理第十九屆全國(guó)學(xué)術(shù)會(huì)議論文集[C];2013年
10 侯亞麗;汪建文;;微管道內(nèi)壁面平均溫度的實(shí)驗(yàn)測(cè)量[A];高等學(xué)校工程熱物理第十九屆全國(guó)學(xué)術(shù)會(huì)議論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 張雙;數(shù)據(jù)中心用泵驅(qū)動(dòng)兩相冷卻回路換熱特性研究[D];北京工業(yè)大學(xué);2015年
2 徐曉;無(wú)導(dǎo)葉對(duì)轉(zhuǎn)渦輪高壓級(jí)動(dòng)葉換熱特性的研究[D];中國(guó)科學(xué)院工程熱物理研究所;2017年
3 郭聰;被動(dòng)式冷卻系統(tǒng)中的流動(dòng)冷凝及其對(duì)系統(tǒng)換熱特性的影響[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2015年
4 路廣遙;管束通道內(nèi)單相及兩相沸騰換熱特性及流動(dòng)特性的研究[D];上海交通大學(xué);2008年
5 莊兆意;直接式原生污水源熱泵系統(tǒng)的防堵技術(shù)及換熱特性研究[D];哈爾濱工業(yè)大學(xué);2012年
6 杜東興;可壓縮性及粗糙度對(duì)微細(xì)管內(nèi)流動(dòng)及換熱特性的影響[D];清華大學(xué);2000年
7 熊鈞;HCFC123高溫工況下水平管外冷凝換熱特性研究[D];哈爾濱工業(yè)大學(xué);2006年
8 劉東;高熱流密度微結(jié)構(gòu)散熱器換熱特性的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
9 陳華軍;旋轉(zhuǎn)曲線管道內(nèi)流動(dòng)結(jié)構(gòu)與換熱特性研究[D];浙江大學(xué);2003年
10 孫多斌;供暖空調(diào)管網(wǎng)流體輸配與換熱特性的研究[D];大連理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 曾俊雄;流場(chǎng)渦旋核心分布對(duì)雙工質(zhì)冷卻帶肋通道換熱特性的影響[D];大連交通大學(xué);2015年
2 何院;旋轉(zhuǎn)條件下典型形狀孔結(jié)構(gòu)流動(dòng)與換熱特性研究[D];南京航空航天大學(xué);2014年
3 史學(xué)捷;對(duì)轉(zhuǎn)渦輪盤(pán)腔內(nèi)的流動(dòng)和換熱特性研究[D];中國(guó)民用航空飛行學(xué)院;2016年
4 徐世杰;大氣壓強(qiáng)對(duì)艙內(nèi)空氣流動(dòng)與傳熱特性的影響研究[D];東南大學(xué);2015年
5 郝玲;冰漿在管道中流動(dòng)換熱特性的研究[D];天津商業(yè)大學(xué);2016年
6 段煉;傾斜和肋化靶面陣列射流沖擊換熱特性研究[D];南京航空航天大學(xué);2016年
7 徐義凱;微型間歇式回?zé)崞髁鲃?dòng)及換熱特性研究[D];南京航空航天大學(xué);2016年
8 蔣蔚;雙層壁微小尺度夾層沖擊換熱特性研究[D];沈陽(yáng)航空航天大學(xué);2017年
9 楊巧文;管內(nèi)單相流動(dòng)與傳熱特性的研究[D];安徽理工大學(xué);2017年
10 趙明明;熱泵冷熱源污水的換熱特性研究[D];哈爾濱工業(yè)大學(xué);2008年
本文編號(hào):2237692
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2237692.html