天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

考慮運行環(huán)境影響的燃?xì)廨啓C渦輪葉片輻射測溫方法研究

發(fā)布時間:2018-09-05 10:04
【摘要】:準(zhǔn)確測量渦輪葉片溫度,對保證燃?xì)廨啓C安全運行具有重要意義。渦輪葉片溫度測量一般采用輻射測溫法,而葉片周圍高溫燃?xì)獾妮椛渑c吸收,高溫背景輻射反射會影響輻射測溫精度。本課題針對這兩個工作環(huán)境影響因素進行研究,提高渦輪葉片在線測溫精度,最終提出考慮運行環(huán)境影響的渦輪葉片輻射測溫方法。渦輪葉片周圍的高溫燃?xì)庾陨頃a(chǎn)生輻射,也會吸收葉片的輻射量。設(shè)計輻射高溫計時通常選擇避開氣體輻射光譜,但是隨著多光譜測溫技術(shù)的發(fā)展以及光學(xué)器件的限制,難以選擇完全不受影響的測量光譜。本文通過研究混合氣體在高溫高壓條件下的輻射特點,分析不同工況下燃?xì)廨椛渑c吸收特性的變化,使用k分布模型將劇烈變化的光譜吸收系數(shù)重新排列成平滑單調(diào)上升的函數(shù),并結(jié)合HITEMP數(shù)據(jù)庫提出了光譜窗計算方法。與已有氣體輻射計算方法相比,該方法的計算精度和計算速度均有優(yōu)勢,可對葉片測溫時燃?xì)獾挠绊懠右孕拚?并為測量光譜優(yōu)化選擇提供依據(jù)。工作環(huán)境的高溫背景輻射在渦輪葉片表面所形成的反射量會直接影響測溫結(jié)果。針對該問題,本文提出了一種高溫背景下輻射溫度計算方法。該方法中使用角系數(shù)描述反射量,建立反射影響下的輻射測溫數(shù)學(xué)模型,進而降低其對測溫結(jié)果造成的影響。輻射測溫數(shù)學(xué)模型加入反射量后,難以對模型直接求解,本文在多光譜測溫理論基礎(chǔ)之上,結(jié)合改進后的多目標(biāo)遺傳算法對模型進行求解,提高了搜索效率和計算精度。通過對處于高溫背景下目標(biāo)的輻射測溫實驗,證明了所提出的方法可有效降低反射對測溫精度的影響。渦輪葉片工作環(huán)境復(fù)雜,葉片在旋轉(zhuǎn)到不同位置時所受到的反射影響不同,難以直接獲取反射量。本文建立了渦輪葉片的背景輻射反射模型,用以準(zhǔn)確描述葉片工作時反射量對測溫精度的影響。在建模過程中,采用高次多項式擬合的方法替代葉片設(shè)計參數(shù)進而構(gòu)造葉片型線方程,可在保證計算精度的前提下簡化計算過程。同時,使用曲線網(wǎng)格結(jié)合面元化方法分析鄰近熱端部件的反射量,該方法與簡化模型相比,充分考慮了葉片表面的非規(guī)則結(jié)構(gòu),并準(zhǔn)確描述了工作環(huán)境反射量變化規(guī)律。通過半實物仿真實驗,驗證了反射模型具有較高的計算精度。在上述研究工作基礎(chǔ)上,提出了考慮運行環(huán)境影響的燃?xì)廨啓C渦輪葉片輻射測溫方法。該方法對已有輻射測溫數(shù)據(jù)處理方法加以改進,在數(shù)據(jù)處理過程中加入高溫燃?xì)廨椛涮匦砸约案邷乇尘拜椛浞瓷溆绊懹嬎?降低測溫過程中渦輪葉片運行環(huán)境的影響,提高測溫精度。最后,分析了渦輪葉片輻射測溫數(shù)據(jù)處理過程中測溫系統(tǒng)以及工作環(huán)境引入的測量不確定度。
[Abstract]:Accurate measurement of turbine blade temperature is of great significance to ensure the safe operation of gas turbine. The radiometric temperature measurement method is generally used for turbine blade temperature measurement, and the radiation and absorption of high temperature gas around the blade, the reflection of high temperature background radiation will affect the accuracy of radiation temperature measurement. In order to improve the accuracy of on-line temperature measurement of turbine blades, a method of radiation temperature measurement for turbine blades considering the influence of operating environment is put forward in this paper. The high temperature gas around the turbine blade produces radiation itself and absorbs radiation from the blade. The design of radiation high temperature timing usually avoids the gas radiation spectrum, but with the development of multispectral temperature measurement technology and the limitation of optical devices, it is difficult to choose the measurement spectrum which is completely unaffected. In this paper, the radiation characteristics of mixed gas under high temperature and high pressure are studied, and the change of gas radiation and absorption characteristics under different working conditions is analyzed. The K distribution model is used to rearrange the sharply varying spectral absorption coefficient into a function of smooth monotone rise and a spectral window calculation method is proposed based on the HITEMP database. Compared with the existing gas radiation calculation method, this method has advantages in calculation accuracy and speed, which can correct the influence of gas on the blade temperature measurement and provide the basis for the optimum selection of measurement spectrum. The reflection of the high temperature background radiation on the turbine blade surface will directly affect the temperature measurement results. In order to solve this problem, a method for calculating radiation temperature in high temperature background is presented in this paper. In this method, the angle coefficient is used to describe the reflectance, and the mathematical model of radiation temperature measurement under the influence of reflection is established to reduce its influence on the temperature measurement results. It is difficult to solve the model directly after adding reflectance to the mathematical model of radiation temperature measurement. Based on the theory of multi-spectral temperature measurement and the improved multi-objective genetic algorithm, the model is solved in this paper, which improves the search efficiency and the calculation accuracy. It is proved that the proposed method can effectively reduce the effect of reflection on the accuracy of temperature measurement through the experiment of radiation temperature measurement of the target in the high temperature background. Because of the complexity of turbine blade working environment, the blade is affected by different reflection when rotating to different position, so it is difficult to directly obtain the reflectance. In this paper, the background radiation reflection model of turbine blade is established to accurately describe the effect of blade reflectance on the accuracy of temperature measurement. In the process of modeling, the method of high order polynomial fitting is used to replace the blade design parameters and construct the blade profile equation, which can simplify the calculation process on the premise of ensuring the calculation accuracy. At the same time, the curved grid combined with surface element method is used to analyze the reflectance of adjacent hot end parts. Compared with the simplified model, the irregular structure of the blade surface is fully considered, and the variation law of the reflectance in the working environment is accurately described. The high accuracy of the reflection model is verified by the hardware-in-the-loop simulation experiment. On the basis of the above research work, a method for measuring the radiation temperature of gas turbine blade considering the influence of operating environment is put forward. This method improves the existing data processing method of radiation temperature measurement, and adds the radiation characteristics of high temperature gas and the calculation of reflection effect of background radiation in the process of data processing, so as to reduce the influence of turbine blade operating environment in the process of temperature measurement. Improve the accuracy of temperature measurement. Finally, the uncertainty of measurement system and working environment in the process of data processing of turbine blade radiation temperature measurement is analyzed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TK477

【相似文獻】

相關(guān)期刊論文 前10條

1 符泰然;程曉舫;鐘茂華;;輻射測溫區(qū)域的界定分析[J];中國工程科學(xué);2008年07期

2 張建勇,程瑞雪,王紹純;紫外輻射測溫理論分析[J];北京科技大學(xué)學(xué)報;1994年04期

3 孫曉剛,戴景民,盧小東;非線性最小二乘法在多波長輻射測溫中的應(yīng)用[J];哈爾濱理工大學(xué)學(xué)報;1997年04期

4 段宇寧;輻射測溫學(xué)研究進展[J];現(xiàn)代計量測試;1999年03期

5 戴景民;輻射測溫的發(fā)展現(xiàn)狀與展望[J];自動化技術(shù)與應(yīng)用;2004年03期

6 孫曉剛,戴景民,褚載祥;平均選點法在多波長輻射測溫中的應(yīng)用[J];佳木斯工學(xué)院學(xué)報;1998年01期

7 符泰然;程曉舫;鐘茂華;楊臧健;;輻射測溫中光譜發(fā)射率的表征描述[J];光譜學(xué)與光譜分析;2008年01期

8 高魁明;測溫技術(shù)(二)——輻射測溫原理與技術(shù)(上)[J];冶金自動化;1981年04期

9 鹿曉力,路立平,鹿曉陽;基于輻射測溫原理的溫度監(jiān)測與調(diào)控系統(tǒng)[J];計量技術(shù);2005年11期

10 劉玉芳;施德恒;朱遵略;;一種被動式輻射測溫系統(tǒng)的波長及其帶寬設(shè)計[J];光學(xué)技術(shù);2006年03期

相關(guān)會議論文 前10條

1 張才根;陳中恩;徐玲;羅霞芬;;一種高精度測量常溫物體發(fā)射率的方法和裝置[A];'99十一。ㄊ校┕鈱W(xué)學(xué)術(shù)會議論文集[C];1999年

2 王景輝;原遵東;;輻射測溫中干涉濾光片光譜透射比測量[A];2007'儀表,自動化及先進集成技術(shù)大會論文集(二)[C];2007年

3 王開明;;某型發(fā)動機二級渦輪葉片強度計算分析[A];探索 創(chuàng)新 交流——第三屆中國航空學(xué)會青年科技論壇文集(第三集)[C];2008年

4 李東哲;劉冬歡;尚新春;;典型渦輪葉片蠕變損傷數(shù)值模擬及壽命預(yù)測[A];北京力學(xué)會第19屆學(xué)術(shù)年會論文集[C];2013年

5 趙威力;;三參數(shù)威布爾分布下的發(fā)動機渦輪葉片可靠性研究[A];第十五屆中國科協(xié)年會第13分會場:航空發(fā)動機設(shè)計、制造與應(yīng)用技術(shù)研討會論文集[C];2013年

6 虞跨海;;流熱耦合下帶冠渦輪葉片振動特性分析[A];力學(xué)與工程應(yīng)用(第十三卷)[C];2010年

7 甄博;康寧;侯貴倉;;渦輪葉片高低周復(fù)合疲勞壽命試驗研究[A];中國航空學(xué)會第七屆動力年會論文摘要集[C];2010年

8 趙歆波;鄒曉春;趙榮椿;;基于數(shù)字樣品的渦輪葉片質(zhì)量檢測方法[A];中國航空學(xué)會信號與信息處理專業(yè)全國第八屆學(xué)術(shù)會議論文集[C];2004年

9 趙歆波;張定華;鄒曉春;;基于錐束體積CT的渦輪葉片快速質(zhì)量檢測[A];陜西省航空裝備制造技術(shù)發(fā)展——第九屆陜西省青年科學(xué)家論壇論文集[C];2006年

10 熊勇;陳昌達;李巍;鄭之梅;但麗玲;張江峰;;渦輪葉片裂紋分析[A];中國航空學(xué)會第七屆動力年會論文摘要集[C];2010年

相關(guān)重要報紙文章 前2條

1 ;中日“中高溫輻射測溫研究”獲得成功[N];科技日報;2000年

2 羅志英 于媛杰;西航榮獲中國質(zhì)量協(xié)會“優(yōu)秀六西格瑪項目”獎[N];中國航空報;2010年

相關(guān)博士學(xué)位論文 前2條

1 高山;考慮運行環(huán)境影響的燃?xì)廨啓C渦輪葉片輻射測溫方法研究[D];哈爾濱工業(yè)大學(xué);2017年

2 馬超;渦輪葉片蒸汽/空氣冷卻特性的實驗研究及數(shù)值模擬[D];上海交通大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 房落鳳;紅外紡織品發(fā)射率測量方法[D];中國計量學(xué)院;2016年

2 唐韜;輻射測溫法及其在落管測溫中的應(yīng)用研究[D];西北工業(yè)大學(xué);2005年

3 馬東棟;基于紅外/可見光技術(shù)的輻射測溫技術(shù)研究[D];哈爾濱工程大學(xué);2011年

4 王磊;前置腔體輻射測溫的研究[D];北方工業(yè)大學(xué);2008年

5 許猛;落管中輻射測溫系統(tǒng)的設(shè)計與研究[D];西北工業(yè)大學(xué);2007年

6 周小敏;基于支持向量機的輻射測溫技術(shù)研究[D];沈陽航空航天大學(xué);2015年

7 寧成達;Mie散射對多譜輻射測溫的影響及修正[D];長春理工大學(xué);2012年

8 吳斌;熱輻射溫度測量技術(shù)研究[D];哈爾濱工程大學(xué);2012年

9 梁培龍;三目標(biāo)六波長高溫計的研制[D];哈爾濱工業(yè)大學(xué);2015年

10 夏偉科;藍(lán)寶石泡生晶體爐的熱場測量技術(shù)的研發(fā)[D];南京師范大學(xué);2014年

,

本文編號:2223950

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2223950.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dfce2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com