天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程博士論文 >

新型功能化離子液體的結(jié)構設計及其在調(diào)控酸性氣體捕集的研究

發(fā)布時間:2018-07-26 11:47
【摘要】:人們已經(jīng)意識到,如果不采取任何行動來應對全球氣候變化的話,一場毀滅性的災難遲早會來臨。眾所周知,二氧化碳(CO2)排放是引起全球變暖、海平面上升以及更為嚴峻的氣候問題的主要元兇。實際上,空氣中人為CO2濃度已經(jīng)積累到了前所未有的水平(約為400 ppm),這主要是由于化石燃料的不斷消耗引起的。因此,非常有必要發(fā)展高效的CO2捕集和儲存技術來緩和當前的CO2危機。在這一點上,離子液體憑借其極低的蒸汽壓、良好的熱穩(wěn)定性、不可燃性、寬的液程、幾乎無限的調(diào)節(jié)性、優(yōu)越的CO2親和性等優(yōu)勢,有望成為最為先進的CO2捕集技術之一。在這篇論文中,我主要集中在新型功能化離子液體的設計合成和CO2吸收性能的調(diào)控。在第一部分中,我們將π電子共軛結(jié)構引入到離子液體陰離子中,可實現(xiàn)可逆的CO2捕集,這主要源自于動態(tài)共價碳氧單鍵的形成。π電子共軛陰離子可以雙重調(diào)控CO2的吸收性能,即同時增強CO2的容量和改善CO2的脫附。改善的脫附性能是由于π電子共軛結(jié)構的電荷分散引起的;增強的吸收容量可能是由于陰離子的聚集效應協(xié)同增強所生成的動態(tài)碳氧單鍵。吸收實驗、譜學研究、理論計算和熱重分析都支持了這種雙重調(diào)控作用。不含氘代溶劑的核磁碳譜技術(No-DNMR)顯示,化學吸收的CO2峰明顯增強,提供了一種有效的原位技術來確定離子液體和CO2的相互作用機理。這些離子液體熱穩(wěn)定性高、吸收容量大、CO2脫附性能強,顯示出動態(tài)共價鍵在消除CO2危機中扮演了重要角色。在第二部分中,我們設計一系列氨基功能化吡啶型離子液體,通過CO2吸收過程中的分子內(nèi)質(zhì)子轉(zhuǎn)移來改善CO2的吸收性能。我們的策略是引入一個堿性基團(去質(zhì)子化的羥基)作為質(zhì)子受體來阻止CO2吸收過程中氨基之間的分子間質(zhì)子轉(zhuǎn)移,從而可實現(xiàn)增強的CO2吸收容量和可控的粘度變化。我們知道,通常所報道的氨基功能化離子液體在CO2吸收過程中往往伴隨著粘度的劇烈增加。與之相反的是,也是非常重要的一點,[P66614][2-NH2-3-O-Py]吸收CO2后,體系的粘度下降約40%,表明是一個自身加速的吸收過程。吸收實驗結(jié)果同時顯示,這些氨基功能化離子液體表現(xiàn)出強勁的、快速的、耐水的、以及可逆的CO2吸收。在第三部分中,我們構筑了新型的光響應陰離子功能化離子液體,分別將偶氮苯基接在季擕鹽陽離子上和以1,2,4-三氮唑作為陰離子。與之前的光響應離子液體不同,我們利用離子交換的方法首次將功能化陰離子(1,2,4-三氮唑)引入到光響應離子液體中,并且可以通過下面兩種途徑獲得純的順式離子液體。一種方法是將離子液體溶于四氫呋喃(THF)溶劑中,經(jīng)過紫外光照射后,去除低沸點的THF溶劑即可。另一種方法是將離子液體制成薄膜,用紫外光照射即可。用紫外光和藍光交替照射離子液體的溶液和薄膜都可以實現(xiàn)離子液體的順反可逆互變。下一步的工作在于考察順反異構效應是否對離子液體的CO2吸收有影響。在第四部分中,我們首次報道了SO2氣體能誘導偶氮苯基型離子液體實現(xiàn)順式到反式構型的翻轉(zhuǎn)。而氮氣(N2)和CO2卻幾乎不能。核磁氫譜(NMR)、紫外可見光譜(UV-vis)和紅外光譜(FT-IR)都證實了吸收SO2后順式偶氮苯基型離子液體的構型能完全從順式向反式發(fā)生翻轉(zhuǎn)。設計邏輯實驗,并進行核磁分析可知,高吸收容量的SO2物理溶解是引起順式偶氮苯基型離子液體的最主要原因。由光異構化速率常數(shù)可知,相對于沒有吸收SO2的離子液體稀溶液而言,[P66614][azo-COO]-SO2稀溶液的光異構化過程受到極大的抑制。這個工作取得的結(jié)果也許對構建新型的刺激響應型材料在氣體傳感器上的研究有所幫助?傊,我們期望新概念和策略的出現(xiàn)和引入,給離子液體的CO2捕集帶來新的活力。我們也期望在解決科學問題的過程中能收獲新的發(fā)現(xiàn)。我需要謹記一點的是,"要善于打破思維定勢,建立跨學科的思維模式,因為這樣往往有助于獲得一些原創(chuàng)性的新發(fā)現(xiàn)。"
[Abstract]:People have realized that if no action is taken to cope with global climate change, a devastating disaster will come sooner or later. Carbon dioxide (CO2) emissions are known to be the main cause of global warming, sea level rise and more severe climate problems. In fact, the concentration of CO2 in the air has been accumulated. The unprecedented level (about 400 ppm) is mainly due to the continuous consumption of fossil fuels. Therefore, it is very necessary to develop efficient CO2 capture and storage techniques to mitigate the current CO2 crisis. At this point, ionic liquids have a very low vapor pressure, good thermal stability, unflammability, wide liquid range, almost unlimited. In this paper, I mainly focus on the design and synthesis of new functional ionic liquids and the regulation of the performance of CO2 absorption. In the first part, we introduce the pi electron conjugated structure into the ionic liquid anion in the first part, which can be reversible. The CO2 trap mainly derives from the formation of the single bond of dynamic covalent carbon and oxygen. The pion electron conjugated anion can double control the absorption properties of CO2, that is, to enhance the capacity of CO2 and to improve the desorption of CO2. The improved desorption performance is caused by the charge dispersion of the conjugated structure of the pi electron; the enhanced absorption capacity may be due to the anion. The aggregation effect synergistically enhanced the dynamic carbon oxygen single bond. Absorption experiments, spectroscopic studies, theoretical calculations and thermogravimetric analysis supported this dual regulation. The CO2 peak without deuterium solvent (No-DNMR) showed that the peak of chemical absorption was obviously enhanced, and an effective in-situ technique was provided to determine the ionic liquid and CO2. These ionic liquids have high thermal stability, high absorption capacity and strong CO2 desorption performance, showing that dynamic covalent bonds play an important role in the elimination of the CO2 crisis. In the second part, we designed a series of amino functional pyridine ionic liquids to improve CO2 through the transfer of intramolecular intron in the CO2 absorption process. Our strategy is to introduce an alkaline group (deprotonated hydroxyl) as a proton receptor to prevent the intermolecular proton transfer between amino groups during CO2 absorption, thus achieving enhanced CO2 absorption capacity and controllable viscosity changes. We know that the commonly reported amino functional ionic liquids have been absorbed in CO2. When [P66614][2-NH2-3-O-Py] absorbs CO2, the viscosity of the system decreases by about 40%, indicating that it is a self accelerating absorption process. The results of absorption experiments show that these amino functional ionic liquids show strong, fast, and water resistant. As well as reversible CO2 absorption, in the third part, we constructed a new type of photoresponse anion functionalized ionic liquid, which respectively connected azo phenyl on quaternary ammonium salt and 1,2,4- three azole as anions. Unlike the previous photoresponse ionic liquids, we used the separation method for the first time to function anions (1,2,4 Three azolol is introduced into the light response ionic liquid and can be obtained by two ways to obtain pure CIS ionic liquids. One way is to dissolve the ionic liquid in the tetrahydrofuran (THF) solvent and remove the low boiling point THF solvent after ultraviolet light. The other is to make the ionic liquid film and irradiate with ultraviolet light. In the fourth part, we first report that the SO2 gas can induce the azo phenyl type ionic liquid. In the fourth part, we report that the SO2 gas can induce the azo phenyl type ionic liquid. However, nitrogen (N2) and CO2 are almost impossible. Nuclear magnetic hydrogen spectrum (NMR), ultraviolet visible spectrum (UV-vis) and infrared spectroscopy (FT-IR) all confirm that the configuration of the CIS diazo phenyl ionic liquid can completely turn from cis to trans form after absorption of SO2. The physical dissolution of the SO2 capacity is the main cause of the CIS type azo phenyl ionic liquid. It is known from the rate constant of the photoisomerization that the photoisomerization process of the [P66614][azo-COO]-SO2 dilute solution is greatly suppressed relative to the dilute solution of the ionic liquid without absorption of SO2. In short, we expect the emergence and introduction of new concepts and strategies to bring new vitality to the CO2 capture of ionic liquids. We also expect to reap new discoveries in the process of solving scientific problems. Interdisciplinary thinking mode, because this often helps to get some original new discoveries. "
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O645.1

【相似文獻】

相關期刊論文 前10條

1 馬賀;郭連權;王帥;韓東;宋開顏;武鶴楠;;扶手椅型單壁碳納米管π電子能帶及其曲線計算[J];沈陽工業(yè)大學學報;2009年04期

2 趙洪剛,王寅,胡式賢,姜萍,何鴻斌,曹陽;分子軌道圖形理論的應用——估算E_π的分點法[J];科學通報;1995年17期

3 楊麗,任愛民,封繼康,劉孝娟,周新;含三種不同π電子中心的幾種雙光子吸收材料的理論研究[J];高等學;瘜W學報;2004年03期

4 華文玉,高培志;聚乙炔嘧啶長鏈分子的π電子能譜研究[J];南京理工大學學報(自然科學版);1985年04期

5 趙洪剛,楊開海,,王長生,張繼才,曹陽;分子軌道圖形理論的應用(Ⅲ)──估算E_π的斷鍵法[J];高等學;瘜W學報;1995年02期

6 劉曉靜;席海濤;孫小強;;氨基富π電子醚鏈的合成與超分子性能研究[J];化學通報;2012年04期

7 謝增鴻;苯基熒光酮各種存在形式的π電子云分布[J];福州大學學報(自然科學版);1997年02期

8 劉路永;;運用激發(fā)態(tài)時,π電子成對運動觀點對馬氏加成規(guī)則的理論解釋[J];漳州職業(yè)技術學院學報;2006年03期

9 趙存元,游效曾;D-A共軛π電子化合物非線性光學性質(zhì)的分子設計研究[J];西北師范大學學報(自然科學版);1997年02期

10 馬艷平;包鵬;虞忠衡;;DFT能量分解和氮芐叉基苯胺分子π電子離域能的研究[J];高等學校化學學報;2006年08期

相關會議論文 前1條

1 王敬中;周達明;丁大同;趙永記;李赫T

本文編號:2145911


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2145911.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶f7f00***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产又大又硬又粗又湿| 天堂av一区一区一区| 欧美又黑又粗大又硬又爽| 国产一区欧美午夜福利| 丝袜人妻夜夜爽一区二区三区| 好吊色欧美一区二区三区顽频| 久七久精品视频黄色的| 99久久精品午夜一区二| 国产内射一级一片内射高清视频 | 欧美精品二区中文乱码字幕高清| 国产三级视频不卡在线观看| 91人妻人人澡人人人人精品| 国产人妻精品区一区二区三区| 国产午夜免费在线视频| 日本欧美视频在线观看免费| 午夜精品麻豆视频91| av国产熟妇露脸在线观看| 97人妻精品一区二区三区男同| 久草视频这里只是精品| 中文字幕av诱惑一区二区| 久久亚洲精品成人国产| 免费黄色一区二区三区| 免费亚洲黄色在线观看| 熟女少妇久久一区二区三区| 91精品国产综合久久福利| 人妻熟女中文字幕在线| 国产精品香蕉在线的人| 熟妇久久人妻中文字幕| 在线九月婷婷丁香伊人| 丁香六月婷婷基地伊人| 好吊日在线观看免费视频| 国产精品亚洲综合色区韩国| 中文字日产幕码三区国产| 亚洲国产精品久久琪琪| 成人午夜视频在线播放| 欧美日韩校园春色激情偷拍| 国产成人精品久久二区二区| 国产欧美韩日一区二区三区| 91精品国自产拍老熟女露脸| 美日韩一区二区精品系列| 九九热在线视频精品免费|