數(shù)字微鏡器件在紅外目標(biāo)場景仿真器中的應(yīng)用研究
[Abstract]:As the core component of the hardware in the loop simulation experiment system, the infrared target scene simulator mainly provides the dynamic infrared target and background environment for the hardware in the loop simulation system, and meets the requirement of the scene conditions required by the simulation experiment. At present, several typical infrared target simulation techniques include the liquid crystal light valve, the infrared CRT, the laser diode and the resistance. Compared with other infrared target simulation techniques, compared with other infrared target simulation techniques, the DMD infrared target scene emulator gets more in-depth application research with its good performance and lower cost advantage. This paper investigates the development status of the DMD infrared target scene simulator and applies the DMD infrared target scene emulator in practical application. The.DMD chip is a reflection type spatial light modulator invented by the American TI (TI) Company in 1987, and is widely used in many fields such as DLP projection display, high definition cinema, spectral imaging and photolithography. At present, the DMD chip produced by TI company is 320~2500nm, its light The cut-off wavelength of the spectral transmittance of the learning window is 2700nm., so when DMD is applied to the 3~5 m and 8~12 m bands, the optical window of the surface needs to be replaced to ensure that DMD can work normally in the medium wave and the long wave infrared band. In this paper, Zn Se infrared material is used as the optical window of DMD, and the plating of Zn Se window glass is first plated and plated. The spectral transmittance of the Zn Se optical window at the 3~5 mu m band is higher than 95%, and the spectral transmittance is higher than 80% at 8~12 / M band. Then, according to the harsh environment and fine operation required in the DMD microlens replacement process, the optical window of the DMD chip is replaced by the laboratory microprocessing technology. The DMD chip after changing the window can be used normally in the 3~5 and 8~12 M band.DMD devices to be applied to the infrared band. The diffraction effect of the DMD microlenses will cause the decline of the contrast of the system imaging, and the diffraction effect becomes more and more significant with the increase of the incident wavelength. When it is applied to the 8~12 in the M band, the diffraction effect causes the serious contrast of the system. The imaging performance of the DMD infrared target scene simulator can not meet the simulation requirements. In order to reduce the diffraction effect of the DMD microlenses and improve the contrast of the system imaging, this paper establishes the DMD micro lens two-dimensional diffraction grating diffraction model based on the working principle and structure characteristics of the microlenses, and uses the scalar diffraction theory and the vector diffraction theory to simulate the diffraction model. The diffraction characteristics of the DMD microlens in the infrared band are analyzed. First, it is obtained by the scalar diffraction model that the contrast degree of the DMD infrared target scene emulator is the best when the illumination beam is incident at the angle of 28 degrees in the 3~5 Mu band. Then the vector diffraction model is used to simulate the 8~ 12 U M band, and the beam polarization state is distributed to the intensity distribution of the DMD diffraction. From the simulation results, it is concluded from the simulation results that the illumination beam is polarized by the TM line and the incident angle is adjusted to 48 degrees in the 8~12 mu m band. The diffraction effect can obviously reduce the influence of the diffraction effect on the contrast degree of the DMD target scene emulator. In order to test and verify the DMD diffraction characteristics of the incident angles and polarization states of different beams, the DMD diffraction characteristic measurement system is set up first. Verify and analyze the correctness of the DMD vector diffraction model at 8~12 mu m band. Then combined with the analysis of the quality factors of the system imaging, the influence of the diffraction effect of DMD microlenses and the micro lens and the spontaneous radiation of the projective lens on the contrast of the imaging system are quantitatively measured. Finally, the improved DMD infrared infrared spectroscopy is based on the analysis results of the DMD diffraction specificity experiment. The contrast degree of the target scene simulator is verified experimentally. It is known from the experimental measurement that the illumination beam is polarized on the TM line in 8~12 mu m band, and when the beam is incident at 48 degrees, the micro lens diffraction effect has the least influence on the DMD target scene simulator system and the system imaging pair is the best. The DMD long wave infrared target scene is developed. According to the simulation calculation and experimental measurement results of the DMD diffraction model, the corresponding lighting and projective optical systems are designed. The influence of the DMD diffraction effect on the imaging quality of the system is reduced by the rational layout of the lighting and projection optical path spatial structure and the modulation of the beam characteristics, in which the contrast of the system is improved. The structure design of lighting can not only make the system have a high utilization rate of light energy, but also reduce the structure length of the system. The projection lens is designed by the far center light path, which ensures the matching of the pupil of the projection system and the lighting system and the realization of the system ejection parallel light. Then the performance test of the developed prototype is verified by experimental measurement, in 8~12 mu m The system has a good imaging performance of about 0.85, and can provide high quality long wave infrared target scene conditions for hardware in the loop simulation system.
【學(xué)位授予單位】:中國科學(xué)院長春光學(xué)精密機械與物理研究所
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TJ765.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁勝智;謝曉方;郭清風(fēng);李洪周;;紅外目標(biāo)圖像感興趣區(qū)域自動提取研究[J];電光與控制;2009年07期
2 侯旺;鐘立軍;張小虎;雷志輝;楊夏;;紅外目標(biāo)分割方法研究[J];國防科技大學(xué)學(xué)報;2013年02期
3 呂俊杰;趙松慶;;光纜圓弧導(dǎo)軌式紅外目標(biāo)/背景仿真裝置[J];航空兵器;1993年03期
4 宋成君,,馬萍,張為平,許海謙;紅外目標(biāo)/背景仿真裝置故障診斷專家系統(tǒng)[J];哈爾濱工業(yè)大學(xué)學(xué)報;1996年06期
5 李秋華,李吉成,沈振康,朱振福;基于模糊綜合的紅外目標(biāo)融合識別[J];國防科技大學(xué)學(xué)報;2003年01期
6 張忠誠,孟慶華,沈振康;紅外目標(biāo)特征分析[J];激光與紅外;1999年03期
7 王章野,吳志華,鮑虎軍,彭群生;紅外目標(biāo)與背景的真實感合成[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2002年11期
8 侯晴宇;張偉;武春風(fēng);逯力紅;;改進(jìn)的均值移位紅外目標(biāo)跟蹤[J];光學(xué)精密工程;2010年03期
9 楊威;李俊山;史德琴;劉婧;;前視紅外目標(biāo)的魯棒分層跟蹤算法[J];彈箭與制導(dǎo)學(xué)報;2010年02期
10 孫航;韓紅霞;郭勁;曹立華;;基于均值偏移快速算法的紅外目標(biāo)跟蹤[J];儀器儀表學(xué)報;2012年05期
相關(guān)會議論文 前10條
1 呂傳峰;樊志英;劉志文;;基于改進(jìn)的均值移位算法的紅外目標(biāo)跟蹤[A];全國第一屆信號處理學(xué)術(shù)會議暨中國高科技產(chǎn)業(yè)化研究會信號處理分會籌備工作委員會第三次工作會議?痆C];2007年
2 郗潤平;周濤;陸惠玲;張艷寧;;變背景下紅外目標(biāo)跟蹤研究[A];第八屆全國信號與信息處理聯(lián)合學(xué)術(shù)會議論文集[C];2009年
3 王飛;;基于粒子濾波的紅外目標(biāo)跟蹤[A];第八屆華東三省一市真空學(xué)術(shù)交流會論文集[C];2013年
4 張蓉;卓紅艷;吳劍濤;李正東;;紅外目標(biāo)前期發(fā)現(xiàn)與檢測處理實驗[A];中國工程物理研究院科技年報(2003)[C];2003年
5 何錫君;陳華礎(chǔ);孟晉麗;;一種實用簡潔的紅外目標(biāo)檢測方法及其實時實現(xiàn)[A];2010年通信理論與信號處理學(xué)術(shù)年會論文集[C];2010年
6 王立志;孫國春;楊寶林;;紅外目標(biāo)仿真系統(tǒng)中的隨動控制系統(tǒng)設(shè)計、建模與調(diào)試[A];1995年中國控制會議論文集(下)[C];1995年
7 陳剛;陸成剛;;利用特征加權(quán)進(jìn)行基于小波框架變換的紅外目標(biāo)檢測[A];中國圖象圖形學(xué)會第十屆全國圖像圖形學(xué)術(shù)會議(CIG’2001)和第一屆全國虛擬現(xiàn)實技術(shù)研討會(CVR’2001)論文集[C];2001年
8 李炯;雷虎民;李國宏;康紅霞;;基于小波網(wǎng)絡(luò)的紅外目標(biāo)識別[A];第九屆全國信息獲取與處理學(xué)術(shù)會議論文集Ⅰ[C];2011年
9 黃治儉;;一種以鄰域均值建立背景的紅外目標(biāo)檢測新算法[A];全國第十四屆紅外加熱暨紅外醫(yī)學(xué)發(fā)展研討會論文及論文摘要集[C];2013年
10 趙欽佩;姚莉秀;何虎翼;楊杰;;一種基于感興趣區(qū)域的紅外目標(biāo)提取方法[A];2006年全國光電技術(shù)學(xué)術(shù)交流會會議文集(D 光電信息處理技術(shù)專題)[C];2006年
相關(guān)博士學(xué)位論文 前6條
1 韓慶;數(shù)字微鏡器件在紅外目標(biāo)場景仿真器中的應(yīng)用研究[D];中國科學(xué)院長春光學(xué)精密機械與物理研究所;2017年
2 張恒;紅外目標(biāo)檢測與識別理論與技術(shù)研究[D];哈爾濱工程大學(xué);2008年
3 劉瑞明;復(fù)雜環(huán)境下紅外目標(biāo)檢測及跟蹤技術(shù)研究[D];上海交通大學(xué);2008年
4 王鑫;復(fù)雜背景下紅外目標(biāo)檢測與跟蹤算法研究[D];南京理工大學(xué);2010年
5 郭偉;復(fù)雜背景下紅外目標(biāo)檢測與跟蹤[D];西安電子科技大學(xué);2008年
6 凌建國;紅外目標(biāo)穩(wěn)健跟蹤和識別研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 李孟儒;基于MeanShift的紅外目標(biāo)跟蹤算法研究[D];沈陽理工大學(xué);2015年
2 劉振奇;高精度大口徑低溫紅外目標(biāo)源系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 翟金龍;低溫紅外目標(biāo)模擬光學(xué)系統(tǒng)設(shè)計及反射鏡制冷技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
4 萬麗麗;基于背景預(yù)測的紅外目標(biāo)檢測[D];華中科技大學(xué);2015年
5 鄧亞平;基于人類視覺機制的紅外弱小目標(biāo)檢測[D];華中科技大學(xué);2015年
6 王玲玲;紅外目標(biāo)檢測與跟蹤算法研究[D];陜西師范大學(xué);2013年
7 盧珊;紅外目標(biāo)檢測識別技術(shù)研究[D];長春理工大學(xué);2009年
8 張海洋;基于粒子濾波的紅外目標(biāo)跟蹤的研究[D];湖南大學(xué);2012年
9 周薇娜;基于神經(jīng)網(wǎng)絡(luò)的紅外目標(biāo)識別研究[D];上海海事大學(xué);2006年
10 李瓊;基于紅外目標(biāo)檢測的DSP實現(xiàn)[D];上海海事大學(xué);2006年
本文編號:2144153
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2144153.html