天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

數(shù)字微鏡器件在紅外目標(biāo)場景仿真器中的應(yīng)用研究

發(fā)布時間:2018-07-25 14:47
【摘要】:作為半實物仿真實驗系統(tǒng)的核心部件,紅外目標(biāo)場景仿真器主要是為半實物仿真系統(tǒng)提供動態(tài)的紅外目標(biāo)和背景環(huán)境,滿足仿真實驗所需要的場景條件需求。目前幾種典型的紅外目標(biāo)仿真技術(shù)包括液晶光閥、紅外CRT、激光二極管、電阻陣列和DMD等技術(shù)。相較于其它紅外目標(biāo)仿真技術(shù),DMD型紅外目標(biāo)場景仿真器以其良好的性能和較低的成本優(yōu)勢而得到了比較深入的應(yīng)用研究。本文通過調(diào)研DMD型紅外目標(biāo)場景仿真器發(fā)展現(xiàn)狀,針對DMD型紅外目標(biāo)場景仿真器在實際應(yīng)用中存在的問題,展開深入研究與具體分析。DMD芯片是由美國德州儀器(TI)公司于1987年發(fā)明的反射式空間光調(diào)制器,并被廣泛應(yīng)用于DLP投影顯示,高清影院,光譜成像以及光刻等諸多領(lǐng)域。目前TI公司生產(chǎn)的DMD芯片工作波段為320~2500nm,其光學(xué)窗口的光譜透過率截止波長為2700nm。因此DMD應(yīng)用于3~5μm和8~12μm波段時,需要對其表面的光學(xué)窗口進(jìn)行更換,以保證DMD能在中波和長波紅外波段正常工作。本論文選用Zn Se紅外材料作為DMD光學(xué)窗口,首先對Zn Se窗口玻璃進(jìn)行鍍膜處理,鍍膜完成后的Zn Se光學(xué)窗口在3~5μm波段的光譜透過率高于95%,在8~12μm波段的光譜透過率高于80%,然后針對DMD微鏡片更換過程中要求的嚴(yán)苛環(huán)境和精細(xì)操作,依托實驗室微納加工工藝,完成了DMD芯片光學(xué)窗口的無損更換。經(jīng)過實驗測試,更換窗口后的DMD芯片可正常應(yīng)用于3~5μm和8~12μm波段。DMD器件應(yīng)用于紅外波段時,DMD微鏡片的衍射效應(yīng)會引起系統(tǒng)成像對比度下降,并且隨著入射波長的增大,衍射效應(yīng)越來越顯著。當(dāng)其應(yīng)用于8~12μm波段時,衍射效應(yīng)造成系統(tǒng)對比度嚴(yán)重下降,使得DMD型紅外目標(biāo)場景仿真器成像性能無法滿足仿真需求。為降低DMD微鏡片的衍射效應(yīng),提高系統(tǒng)成像對比度,本文根據(jù)微鏡片工作原理和結(jié)構(gòu)特性,建立DMD微鏡片二維衍射光柵衍射模型,利用標(biāo)量衍射理論與矢量衍射理論仿真分析DMD微鏡片在紅外波段的衍射特性。首先利用標(biāo)量衍射模型仿真計算得出:在3~5μm波段,照明光束以28°角度入射時,DMD型紅外目標(biāo)場景仿真器成像對比度最好。然后利用矢量衍射模型仿真計算在8~12μm波段,光束偏振態(tài)對DMD衍射光強分布影響,由仿真結(jié)果得出結(jié)論:在8~12μm波段,照明光束以TM線偏振光入射,入射角調(diào)整為48°,能明顯降低衍射效應(yīng)對DMD型目標(biāo)場景仿真器成像對比度影響。為測量驗證不同光束入射角和偏振態(tài)下DMD衍射特性,首先搭建DMD衍射特性測量系統(tǒng),驗證分析在8~12μm波段,DMD矢量衍射模型的正確性。然后結(jié)合系統(tǒng)成像質(zhì)量因素的分析,定量測量分析DMD微鏡片衍射效應(yīng)和微鏡片以及投影鏡頭自發(fā)輻射對系統(tǒng)成像對比度的影響。最后根據(jù)DMD衍射特性實驗分析結(jié)果,對改進(jìn)的DMD型紅外目標(biāo)場景仿真器成像對比度進(jìn)行實驗驗證。由實驗測量分析可知:在8~12μm波段,照明光束為TM線偏振光,光束以48°角度入射時,微鏡片衍射效應(yīng)對DMD型目標(biāo)場景仿真器系統(tǒng)影響最小,系統(tǒng)成像對比度最好。研制了DMD型長波紅外目標(biāo)場景仿真器,首先根據(jù)DMD衍射模型的仿真計算和實驗測量結(jié)果,設(shè)計相應(yīng)的照明和投影光學(xué)系統(tǒng),通過照明和投影光路空間結(jié)構(gòu)的合理布局以及光束特性的調(diào)制,降低DMD衍射效應(yīng)對系統(tǒng)成像質(zhì)量的影響,提高系統(tǒng)對比度。其中照明光路選用直接照明的結(jié)構(gòu)設(shè)計,既能使系統(tǒng)具有較高的光能利用率,又減小系統(tǒng)結(jié)構(gòu)長度;投影鏡頭選用遠(yuǎn)心光路設(shè)計,保證了投影系統(tǒng)與照明系統(tǒng)的光瞳匹配和實現(xiàn)系統(tǒng)出射平行光。然后對研制的樣機進(jìn)行成像性能測試,經(jīng)實驗測量驗證,在8~12μm波段,系統(tǒng)成像對比度為0.85左右,成像性能良好,可為半實物仿真系統(tǒng)提供高質(zhì)量的長波紅外目標(biāo)場景條件。
[Abstract]:As the core component of the hardware in the loop simulation experiment system, the infrared target scene simulator mainly provides the dynamic infrared target and background environment for the hardware in the loop simulation system, and meets the requirement of the scene conditions required by the simulation experiment. At present, several typical infrared target simulation techniques include the liquid crystal light valve, the infrared CRT, the laser diode and the resistance. Compared with other infrared target simulation techniques, compared with other infrared target simulation techniques, the DMD infrared target scene emulator gets more in-depth application research with its good performance and lower cost advantage. This paper investigates the development status of the DMD infrared target scene simulator and applies the DMD infrared target scene emulator in practical application. The.DMD chip is a reflection type spatial light modulator invented by the American TI (TI) Company in 1987, and is widely used in many fields such as DLP projection display, high definition cinema, spectral imaging and photolithography. At present, the DMD chip produced by TI company is 320~2500nm, its light The cut-off wavelength of the spectral transmittance of the learning window is 2700nm., so when DMD is applied to the 3~5 m and 8~12 m bands, the optical window of the surface needs to be replaced to ensure that DMD can work normally in the medium wave and the long wave infrared band. In this paper, Zn Se infrared material is used as the optical window of DMD, and the plating of Zn Se window glass is first plated and plated. The spectral transmittance of the Zn Se optical window at the 3~5 mu m band is higher than 95%, and the spectral transmittance is higher than 80% at 8~12 / M band. Then, according to the harsh environment and fine operation required in the DMD microlens replacement process, the optical window of the DMD chip is replaced by the laboratory microprocessing technology. The DMD chip after changing the window can be used normally in the 3~5 and 8~12 M band.DMD devices to be applied to the infrared band. The diffraction effect of the DMD microlenses will cause the decline of the contrast of the system imaging, and the diffraction effect becomes more and more significant with the increase of the incident wavelength. When it is applied to the 8~12 in the M band, the diffraction effect causes the serious contrast of the system. The imaging performance of the DMD infrared target scene simulator can not meet the simulation requirements. In order to reduce the diffraction effect of the DMD microlenses and improve the contrast of the system imaging, this paper establishes the DMD micro lens two-dimensional diffraction grating diffraction model based on the working principle and structure characteristics of the microlenses, and uses the scalar diffraction theory and the vector diffraction theory to simulate the diffraction model. The diffraction characteristics of the DMD microlens in the infrared band are analyzed. First, it is obtained by the scalar diffraction model that the contrast degree of the DMD infrared target scene emulator is the best when the illumination beam is incident at the angle of 28 degrees in the 3~5 Mu band. Then the vector diffraction model is used to simulate the 8~ 12 U M band, and the beam polarization state is distributed to the intensity distribution of the DMD diffraction. From the simulation results, it is concluded from the simulation results that the illumination beam is polarized by the TM line and the incident angle is adjusted to 48 degrees in the 8~12 mu m band. The diffraction effect can obviously reduce the influence of the diffraction effect on the contrast degree of the DMD target scene emulator. In order to test and verify the DMD diffraction characteristics of the incident angles and polarization states of different beams, the DMD diffraction characteristic measurement system is set up first. Verify and analyze the correctness of the DMD vector diffraction model at 8~12 mu m band. Then combined with the analysis of the quality factors of the system imaging, the influence of the diffraction effect of DMD microlenses and the micro lens and the spontaneous radiation of the projective lens on the contrast of the imaging system are quantitatively measured. Finally, the improved DMD infrared infrared spectroscopy is based on the analysis results of the DMD diffraction specificity experiment. The contrast degree of the target scene simulator is verified experimentally. It is known from the experimental measurement that the illumination beam is polarized on the TM line in 8~12 mu m band, and when the beam is incident at 48 degrees, the micro lens diffraction effect has the least influence on the DMD target scene simulator system and the system imaging pair is the best. The DMD long wave infrared target scene is developed. According to the simulation calculation and experimental measurement results of the DMD diffraction model, the corresponding lighting and projective optical systems are designed. The influence of the DMD diffraction effect on the imaging quality of the system is reduced by the rational layout of the lighting and projection optical path spatial structure and the modulation of the beam characteristics, in which the contrast of the system is improved. The structure design of lighting can not only make the system have a high utilization rate of light energy, but also reduce the structure length of the system. The projection lens is designed by the far center light path, which ensures the matching of the pupil of the projection system and the lighting system and the realization of the system ejection parallel light. Then the performance test of the developed prototype is verified by experimental measurement, in 8~12 mu m The system has a good imaging performance of about 0.85, and can provide high quality long wave infrared target scene conditions for hardware in the loop simulation system.
【學(xué)位授予單位】:中國科學(xué)院長春光學(xué)精密機械與物理研究所
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TJ765.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 袁勝智;謝曉方;郭清風(fēng);李洪周;;紅外目標(biāo)圖像感興趣區(qū)域自動提取研究[J];電光與控制;2009年07期

2 侯旺;鐘立軍;張小虎;雷志輝;楊夏;;紅外目標(biāo)分割方法研究[J];國防科技大學(xué)學(xué)報;2013年02期

3 呂俊杰;趙松慶;;光纜圓弧導(dǎo)軌式紅外目標(biāo)/背景仿真裝置[J];航空兵器;1993年03期

4 宋成君,,馬萍,張為平,許海謙;紅外目標(biāo)/背景仿真裝置故障診斷專家系統(tǒng)[J];哈爾濱工業(yè)大學(xué)學(xué)報;1996年06期

5 李秋華,李吉成,沈振康,朱振福;基于模糊綜合的紅外目標(biāo)融合識別[J];國防科技大學(xué)學(xué)報;2003年01期

6 張忠誠,孟慶華,沈振康;紅外目標(biāo)特征分析[J];激光與紅外;1999年03期

7 王章野,吳志華,鮑虎軍,彭群生;紅外目標(biāo)與背景的真實感合成[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2002年11期

8 侯晴宇;張偉;武春風(fēng);逯力紅;;改進(jìn)的均值移位紅外目標(biāo)跟蹤[J];光學(xué)精密工程;2010年03期

9 楊威;李俊山;史德琴;劉婧;;前視紅外目標(biāo)的魯棒分層跟蹤算法[J];彈箭與制導(dǎo)學(xué)報;2010年02期

10 孫航;韓紅霞;郭勁;曹立華;;基于均值偏移快速算法的紅外目標(biāo)跟蹤[J];儀器儀表學(xué)報;2012年05期

相關(guān)會議論文 前10條

1 呂傳峰;樊志英;劉志文;;基于改進(jìn)的均值移位算法的紅外目標(biāo)跟蹤[A];全國第一屆信號處理學(xué)術(shù)會議暨中國高科技產(chǎn)業(yè)化研究會信號處理分會籌備工作委員會第三次工作會議?痆C];2007年

2 郗潤平;周濤;陸惠玲;張艷寧;;變背景下紅外目標(biāo)跟蹤研究[A];第八屆全國信號與信息處理聯(lián)合學(xué)術(shù)會議論文集[C];2009年

3 王飛;;基于粒子濾波的紅外目標(biāo)跟蹤[A];第八屆華東三省一市真空學(xué)術(shù)交流會論文集[C];2013年

4 張蓉;卓紅艷;吳劍濤;李正東;;紅外目標(biāo)前期發(fā)現(xiàn)與檢測處理實驗[A];中國工程物理研究院科技年報(2003)[C];2003年

5 何錫君;陳華礎(chǔ);孟晉麗;;一種實用簡潔的紅外目標(biāo)檢測方法及其實時實現(xiàn)[A];2010年通信理論與信號處理學(xué)術(shù)年會論文集[C];2010年

6 王立志;孫國春;楊寶林;;紅外目標(biāo)仿真系統(tǒng)中的隨動控制系統(tǒng)設(shè)計、建模與調(diào)試[A];1995年中國控制會議論文集(下)[C];1995年

7 陳剛;陸成剛;;利用特征加權(quán)進(jìn)行基于小波框架變換的紅外目標(biāo)檢測[A];中國圖象圖形學(xué)會第十屆全國圖像圖形學(xué)術(shù)會議(CIG’2001)和第一屆全國虛擬現(xiàn)實技術(shù)研討會(CVR’2001)論文集[C];2001年

8 李炯;雷虎民;李國宏;康紅霞;;基于小波網(wǎng)絡(luò)的紅外目標(biāo)識別[A];第九屆全國信息獲取與處理學(xué)術(shù)會議論文集Ⅰ[C];2011年

9 黃治儉;;一種以鄰域均值建立背景的紅外目標(biāo)檢測新算法[A];全國第十四屆紅外加熱暨紅外醫(yī)學(xué)發(fā)展研討會論文及論文摘要集[C];2013年

10 趙欽佩;姚莉秀;何虎翼;楊杰;;一種基于感興趣區(qū)域的紅外目標(biāo)提取方法[A];2006年全國光電技術(shù)學(xué)術(shù)交流會會議文集(D 光電信息處理技術(shù)專題)[C];2006年

相關(guān)博士學(xué)位論文 前6條

1 韓慶;數(shù)字微鏡器件在紅外目標(biāo)場景仿真器中的應(yīng)用研究[D];中國科學(xué)院長春光學(xué)精密機械與物理研究所;2017年

2 張恒;紅外目標(biāo)檢測與識別理論與技術(shù)研究[D];哈爾濱工程大學(xué);2008年

3 劉瑞明;復(fù)雜環(huán)境下紅外目標(biāo)檢測及跟蹤技術(shù)研究[D];上海交通大學(xué);2008年

4 王鑫;復(fù)雜背景下紅外目標(biāo)檢測與跟蹤算法研究[D];南京理工大學(xué);2010年

5 郭偉;復(fù)雜背景下紅外目標(biāo)檢測與跟蹤[D];西安電子科技大學(xué);2008年

6 凌建國;紅外目標(biāo)穩(wěn)健跟蹤和識別研究[D];上海交通大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 李孟儒;基于MeanShift的紅外目標(biāo)跟蹤算法研究[D];沈陽理工大學(xué);2015年

2 劉振奇;高精度大口徑低溫紅外目標(biāo)源系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年

3 翟金龍;低溫紅外目標(biāo)模擬光學(xué)系統(tǒng)設(shè)計及反射鏡制冷技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年

4 萬麗麗;基于背景預(yù)測的紅外目標(biāo)檢測[D];華中科技大學(xué);2015年

5 鄧亞平;基于人類視覺機制的紅外弱小目標(biāo)檢測[D];華中科技大學(xué);2015年

6 王玲玲;紅外目標(biāo)檢測與跟蹤算法研究[D];陜西師范大學(xué);2013年

7 盧珊;紅外目標(biāo)檢測識別技術(shù)研究[D];長春理工大學(xué);2009年

8 張海洋;基于粒子濾波的紅外目標(biāo)跟蹤的研究[D];湖南大學(xué);2012年

9 周薇娜;基于神經(jīng)網(wǎng)絡(luò)的紅外目標(biāo)識別研究[D];上海海事大學(xué);2006年

10 李瓊;基于紅外目標(biāo)檢測的DSP實現(xiàn)[D];上海海事大學(xué);2006年



本文編號:2144153

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2144153.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶58cbc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com