列車節(jié)能優(yōu)化操縱理論及應用研究
[Abstract]:The train operation is the result of the joint action of many factors in a complex and changeable environment. The train operation control in our country mainly depends on the locomotive driver's experience and operation technical level. Although the unit energy consumption of railway transportation is decreasing year by year, the total energy consumption is still huge. Therefore, it is of great significance to study the optimal operation of train energy saving for railway industry. In this paper, the optimal operation of train energy saving is studied from the two aspects of interval operation control and stop braking control. On the premise of ensuring the safety of train operation, the energy consumption and punctuality are established. This paper presents and improves the optimization algorithm of the multi-objective train energy saving operation model, and carries out the field test. The main contents of this paper include the following aspects: 1. Based on the train motion process, this paper studies the force acting on the train operation process, and analyzes the main forms of energy consumption in the train operation. Through theoretical analysis and expert experience, it is pointed out that the key to reduce the energy consumption of train operation is to maintain the equalization of train running speed and reduce unnecessary braking. The optimization model of train operation process is established, which aims at energy consumption, running time and stopping accuracy. Based on genetic algorithm (GA), train control problem is studied, and the optimization algorithm is improved. In order to speed up the convergence of the algorithm, the locomotive driver's experience is used as the constraint information to update the solution. The optimization process of the guidance algorithm moves towards the optimal solution region. The simulated annealing algorithm is used to solve the train control model. It is verified that the calculated results can meet the requirements of the train operation control. 3. In this paper, the related methods of train energy saving operation are studied, and the method of combining simulated annealing algorithm with genetic algorithm is proposed to solve the multi-objective train optimization problem. The simulation results show that the actual train operation is compared with the optimization model. The algorithm has good flexibility, not only can adapt to different line conditions, but also can effectively reduce the energy consumption of train operation. This paper analyzes the braking process and operation requirements of the train, and points out that the key of train braking is to reasonably select the initial braking point and the relief point, and to reduce the train kinetic energy loss as much as possible on the premise of satisfying the line constraints and avoiding the secondary braking. The control variables and constraint conditions of train braking are discussed, and the fuzzy neural network model of stopping braking is established. The simulation results show that using fuzzy neural network to control the train braking can realize the primary braking stop of the train on the premise of safety and stability, and effectively avoid the control mode of the secondary braking stop. Therefore, it is helpful to reduce the energy consumption of train operation. In this paper, the problem of train optimal operation is studied from both theoretical and practical aspects, and a train optimal operation model is established. After practical operation and simulation, the model can effectively reduce the energy consumption of train operation. It has certain theoretical significance and application value to the railway industry energy saving and emission reduction.
【學位授予單位】:北京交通大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:U268.6
【相似文獻】
相關期刊論文 前10條
1 蔣兆遠;列車優(yōu)化操縱指導裝置(下)[J];內燃機車;1995年05期
2 毛節(jié)銘,王海鷹;列車優(yōu)化操縱計算機輔助系統(tǒng)[J];西南交通大學學報;1995年03期
3 馮曉云,何鴻云,朱金陵;列車優(yōu)化操縱原則及其優(yōu)化操縱策略的數(shù)學描述[J];機車電傳動;2001年04期
4 崔世文,馮曉云;列車優(yōu)化操縱與自動駕駛模式的研究與仿真[J];鐵道機車車輛;2005年05期
5 金煒東,靳蕃,李崇維,胡飛,茍先太;列車優(yōu)化操縱速度模式曲線生成的智能計算研究[J];鐵道學報;1998年05期
6 李平;張健;周震;殷明娟;;機車智能優(yōu)化操縱向導裝置的研制[J];儀器儀表用戶;2006年01期
7 何鵬飛;;列車行車優(yōu)化操縱的研究[J];鐵路計算機應用;2013年06期
8 王自力;列車節(jié)能運行優(yōu)化操縱的研究[J];西南交通大學學報;1994年03期
9 李波;王自力;;遺傳算法在列車優(yōu)化操縱曲線方面的應用[J];內燃機車;2008年03期
10 蔣兆遠;列車優(yōu)化操縱指導裝置(上)[J];內燃機車;1995年04期
相關會議論文 前2條
1 藺文樂;;電力機車安全優(yōu)化操縱淺析[A];第三屆鐵路安全風險管理及技術裝備研討會論文集(下冊)[C];2012年
2 牛蘭山;;突破控制難點 狠抓責任落實 靠機制建設推進機車節(jié)能降耗工作[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國科協(xié)年會論文集(一)[C];2007年
相關重要報紙文章 前1條
1 本報記者 李軍;知識點亮人生[N];人民鐵道;2011年
相關博士學位論文 前2條
1 張勇;列車節(jié)能優(yōu)化操縱理論及應用研究[D];北京交通大學;2017年
2 周鵬;多車協(xié)同優(yōu)化操縱理論及其應用研究[D];北京交通大學;2011年
相關碩士學位論文 前5條
1 王新培;基于多目標的重載列車優(yōu)化操縱研究[D];西南交通大學;2016年
2 何鵬飛;列車行車優(yōu)化操縱的研究[D];西南交通大學;2012年
3 郭劍峰;機車節(jié)能優(yōu)化操縱技術研究[D];北京交通大學;2011年
4 董暉;電力機車節(jié)能與優(yōu)化操縱研究[D];北京交通大學;2012年
5 陳優(yōu);基于DF7G內燃機車模型的優(yōu)化操縱方法研究[D];北京交通大學;2010年
,本文編號:2139120
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2139120.html