交流機(jī)車PWM整流器諧波特性優(yōu)化控制與調(diào)制算法研究
本文選題:牽引傳動(dòng)系統(tǒng) + 牽引供電系統(tǒng)。 參考:《北京交通大學(xué)》2017年博士論文
【摘要】:隨著我國電氣化鐵路事業(yè)的高速發(fā)展,電力機(jī)車牽引傳動(dòng)技術(shù)已完成了從傳統(tǒng)直流傳動(dòng)技術(shù)到新型交流傳動(dòng)技術(shù)的升級(jí)。交流機(jī)車仍向網(wǎng)側(cè)注入一定含量的低次諧波電流,對(duì)電網(wǎng)環(huán)境造成污染,也引起過網(wǎng)壓畸變并導(dǎo)致車輛啟動(dòng)故障。在車網(wǎng)電氣匹配失穩(wěn)的工況下,交流機(jī)車發(fā)出的少量高次諧波電流/電壓就可在牽引網(wǎng)產(chǎn)生顯著的諧波放大現(xiàn)象,從而引發(fā)牽引供電系統(tǒng)高次諧波諧振,我國已有超過10條線路發(fā)生多起諧振事故,嚴(yán)重影響了鐵路系統(tǒng)的安全穩(wěn)定運(yùn)營。作為車網(wǎng)耦合系統(tǒng)中的諧波源,交流機(jī)車諧波特性主要取決于其牽引傳動(dòng)系統(tǒng)網(wǎng)側(cè)的單相PWM整流器,因此本文以大量實(shí)測工作反映出的車網(wǎng)諧波問題作為出發(fā)點(diǎn),以諧波治理、諧振抑制為目標(biāo),對(duì)PWM整流器諧波特性優(yōu)化控制和調(diào)制算法開展一系列的研究工作。對(duì)單相PWM整流器兩種典型拓?fù)?兩電平H橋和三電平二極管箝位型)進(jìn)行了數(shù)學(xué)建模,研究了交流機(jī)車PWM整流器3種常規(guī)控制策略,分析了常用的載波PWM(Carrier Based PWM,CBPWM)的基本原理。運(yùn)用雙邊傅里葉級(jí)數(shù)解析CBPWM過程,得到了高次諧波電流特性,從閉環(huán)控制的角度分析了低次諧波電流產(chǎn)生的機(jī)理。以CRH380AL動(dòng)車組實(shí)測數(shù)據(jù)為基礎(chǔ),進(jìn)行了交流機(jī)車網(wǎng)側(cè)電流諧波特性解析、仿真和實(shí)測的綜合分析。運(yùn)用內(nèi)模原理證明了要實(shí)現(xiàn)對(duì)正弦電流的無靜差跟蹤和正弦電壓擾動(dòng)的抑制,必須在控制器植入相應(yīng)頻率的正弦量內(nèi)模;谶@一原理,設(shè)計(jì)多重化準(zhǔn)比例諧振(Multiple Quasi-Proportional Integral,M-Q-PR)控制器調(diào)節(jié)網(wǎng)側(cè)電流基波及低次諧波分量,并在直流側(cè)電壓反饋回路引入多重化陷波濾波器(Multiple Notch Filter,M-NF)濾除直流電壓脈動(dòng)對(duì)電流低次諧波的影響;谏鲜鲅芯刻岢隽艘环N單相PWM整流器M-Q-PR+M-NF控制策略抑制交流機(jī)車網(wǎng)側(cè)電流低次諧波,并對(duì)提出的算法的可靠性和有效性進(jìn)行了仿真和實(shí)驗(yàn)驗(yàn)證。運(yùn)用簡化等效電路模型分析了車網(wǎng)諧波耦合機(jī)理和牽引供電系統(tǒng)高次諧波諧振特性。基于特定諧波消除 PWM(Selective Harmonic Elimination PWM,SHE-PWM)技術(shù),并根據(jù)實(shí)際諧振規(guī)律和特性,規(guī)劃單相多重化SHE-PWM問題,提出了一種窗口化特定諧波消除 PWM(Windowed Selective Harmonic Elimination PWM,WSHE-PWM)。WSHE-PWM可消除1000Hz以內(nèi)所有低次諧波,在1000~3500Hz范圍提供500Hz帶寬高次諧波消除能力,因此可覆蓋不同供電區(qū)段的不同諧振頻率。WSHE-PWM算法的設(shè)計(jì)預(yù)留了諧波控制冗余,可在離線環(huán)境解得較寬范圍的連續(xù)開關(guān)角度解,并直接應(yīng)用于經(jīng)典閉環(huán)控制系統(tǒng)中。車網(wǎng)聯(lián)合仿真結(jié)果證明了在傳統(tǒng)PWM方式引起車網(wǎng)系統(tǒng)諧振時(shí),采用WSHE-PWM可以有效抑制諧振,在等效諧振電路上的實(shí)驗(yàn)結(jié)果進(jìn)一步證明了 WSHE-PWM的諧振抑制作用。將有限控制集模型預(yù)測控制(Finite Control Set Model Predictive Control,FCS-MPC)與WSHE-PWM結(jié)合,提出了一種WSHE-MPC控制算法。與常規(guī)雙閉環(huán)控制策略相比,該算法通過設(shè)計(jì)動(dòng)態(tài)參考電流實(shí)現(xiàn)單閉環(huán)結(jié)構(gòu)下的多目標(biāo)控制,控制系統(tǒng)不采用PI控制器充分發(fā)揮了 FCS-MPC快速動(dòng)態(tài)響應(yīng)特性。與標(biāo)準(zhǔn)FCS-MPC相比,該算法將WSHE-PWM作為控制輸入的約束條件引入目標(biāo)函數(shù),克服了變流器開關(guān)頻率和輸出頻譜不固定的缺陷。仿真結(jié)果驗(yàn)證了 WSHE-MPC算法的穩(wěn)態(tài)頻譜特性和快速動(dòng)態(tài)響應(yīng)特性。
[Abstract]:With the rapid development of the electrified railway in China, the traction drive technology of electric locomotive has completed the upgrading from the traditional DC transmission technology to the new type of AC transmission technology. The AC locomotive still injects a certain amount of low harmonic current into the network side, causes pollution to the power grid environment, and causes the distortion of over network pressure and causes the vehicle start fault. A small amount of high order harmonic current / voltage issued by the AC locomotive can produce a significant harmonic amplification phenomenon in the traction network, resulting in high harmonic harmonic resonance in traction power supply system. There are more than 10 lines of resonance accidents in China, which seriously affects the safe and stable operation of the railway system. For the harmonic source in the car network coupling system, the harmonic characteristics of the AC locomotive depend mainly on the single-phase PWM rectifier of the traction drive system. Therefore, this paper takes the harmonic problem of a large number of measured work as the starting point, the harmonic control and the resonance suppression as the target, the harmonic characteristic optimization control and the modulation algorithm of the PWM rectifier. A series of research work is carried out. Two typical topologies of single phase PWM rectifier (two level H bridge and three level diode clamp type) are modeled and 3 conventional control strategies for AC locomotive PWM rectifier are studied. The basic principle of common carrier PWM (Carrier Based PWM, CBPWM) is analyzed. The characteristic of high order harmonic current is obtained. The mechanism of low order harmonic current is analyzed from the angle of closed loop control. Based on the measured data of CRH380AL EMU, the harmonic characteristic analysis, simulation and measurement are carried out on the side current of the AC locomotive. And the suppression of sinusoidal voltage disturbance must be embedded in the sinusoidal internal mode of the corresponding frequency in the controller. Based on this principle, the Multiple Quasi-Proportional Integral (M-Q-PR) controller is designed to adjust the base and low harmonic components of the network side, and the multiple notch filter is introduced in the DC side voltage feedback loop. Multiple Notch Filter, M-NF) filter the influence of DC voltage pulsation on low current harmonic current. Based on the above study, a single phase PWM rectifier M-Q-PR+M-NF control strategy is proposed to suppress low frequency harmonic in the AC locomotive network side current, and the reliability and effectiveness of the proposed algorithm are verified by simulation and experimental verification. The simplified equivalent circuit is used. The harmonic coupling mechanism of the vehicle network and the high harmonic resonance characteristics of the traction power supply system are analyzed. Based on the specific harmonic elimination PWM (Selective Harmonic Elimination PWM, SHE-PWM) technology, and according to the actual resonance laws and characteristics, a single phase multiplex SHE-PWM problem is planned, and a window specific harmonic elimination PWM (Windowed Selecti) is proposed. Ve Harmonic Elimination PWM, WSHE-PWM).WSHE-PWM can eliminate all low harmonics within 1000Hz, and provide 500Hz bandwidth high harmonic elimination ability in the range of 1000 to 3500Hz, so it can cover different resonant frequency.WSHE-PWM algorithms of different power supply sections and reserve harmonic control redundancy, which can be solved in a wider range in the off-line environment. The combined simulation results show that WSHE-PWM can effectively suppress resonance when the traditional PWM mode caused the resonance of the car network system, and the experimental results on the equivalent resonant circuit prove the resonance suppression of the WSHE-PWM. The finite control set model is preformed. Finite Control Set Model Predictive Control (FCS-MPC) and WSHE-PWM are combined with WSHE-PWM, and a WSHE-MPC control algorithm is proposed. Compared with the conventional double closed loop control strategy, the algorithm realizes the multi target control under the single closed loop structure by designing the dynamic reference current, and the control system does not use the PI controller to give full play to the FCS-MPC fast motion. Compared with the standard FCS-MPC, the algorithm introduces the WSHE-PWM as the constraint condition of the control input to the target function, and overcomes the defect that the switching frequency and the output spectrum of the converter are not fixed. The simulation results verify the steady-state spectrum characteristic and the fast dynamic response characteristic of the WSHE-MPC algorithm.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:U264.91
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉錚;王翠;彭永進(jìn);;優(yōu)化開關(guān)頻率的空間矢量調(diào)制算法[J];高電壓技術(shù);2008年06期
2 劉小素;陳昌;;級(jí)聯(lián)H橋多電平變流器優(yōu)化調(diào)制算法研究[J];儀器儀表用戶;2011年01期
3 易龍強(qiáng);戴瑜興;郜克存;;一種基于DSP的(可變頻)異步調(diào)制算法[J];湖南科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
4 高瑩;謝吉華;李賡;;SVPWM過調(diào)制算法的分析和仿真[J];微特電機(jī);2007年06期
5 王翠;劉錚;彭永進(jìn);;一種快速的多電平空間矢量調(diào)制算法[J];高電壓技術(shù);2009年06期
6 余亞冰;于波;王進(jìn)花;;三相四開關(guān)并聯(lián)型APF的SVPWM調(diào)制算法研究[J];自動(dòng)化與儀器儀表;2012年01期
7 唐釀;肖湘寧;陳征;徐永海;;矩陣變流器虛擬逆變側(cè)無扇區(qū)調(diào)制算法[J];中國電機(jī)工程學(xué)報(bào);2012年09期
8 董侃;刁利軍;趙雷廷;劉志剛;;基于基本矢量鉗位策略的過調(diào)制算法研究[J];鐵道學(xué)報(bào);2014年06期
9 張立偉,溫旭輝,劉鈞,陳桂蘭;一種新穎的分段連續(xù)控制SVPWM過調(diào)制算法[J];中小型電機(jī);2005年07期
10 呂敬;張建文;王晗;蔡旭;;SVPWM過調(diào)制算法的理論分析與實(shí)驗(yàn)應(yīng)用[J];電氣傳動(dòng);2011年08期
相關(guān)會(huì)議論文 前2條
1 劉海云;韓繼征;李玉倉;張浩;胡雪生;;交直交變頻三電平矢量脈寬調(diào)制模式的原理及調(diào)制算法探討[A];第十一屆全國自動(dòng)化應(yīng)用技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2006年
2 劉賀;姜建國;陳成輝;陳四熊;彭霞;;一種新型五電平空間矢量調(diào)制算法[A];第七屆中國高校電力電子與電力傳動(dòng)學(xué)術(shù)年會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 宋可薦;交流機(jī)車PWM整流器諧波特性優(yōu)化控制與調(diào)制算法研究[D];北京交通大學(xué);2017年
相關(guān)碩士學(xué)位論文 前6條
1 陸慶;變載頻調(diào)制算法下逆變器諧波抑制與濾波器設(shè)計(jì)的研究[D];溫州大學(xué);2015年
2 鄭志軍;電力牽引永磁同步電機(jī)矢量控制與調(diào)制算法研究[D];西南交通大學(xué);2016年
3 馬偉天;中點(diǎn)鉗位型H橋級(jí)聯(lián)單相整流器SVPWM調(diào)制算法研究[D];西南交通大學(xué);2016年
4 馮俊飛;OFDM-PON自適應(yīng)調(diào)制算法的研究與實(shí)現(xiàn)[D];上海大學(xué);2014年
5 宛世源;SVPWM過調(diào)制算法研究與實(shí)現(xiàn)[D];華中科技大學(xué);2014年
6 羅方利;五電平逆變器空間矢量調(diào)制算法的簡化研究[D];太原科技大學(xué);2014年
,本文編號(hào):2104238
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2104238.html