基于三臂自由擺動(dòng)式活塞發(fā)動(dòng)機(jī)的微型能源動(dòng)力系統(tǒng)理論與實(shí)驗(yàn)研究
本文選題:微型能源動(dòng)力系統(tǒng) + 自由擺動(dòng)式活塞發(fā)動(dòng)機(jī); 參考:《中國(guó)科學(xué)院工程熱物理研究所》2017年博士論文
【摘要】:目前微型電腦、微型機(jī)器人及便攜式檢測(cè)儀器等微機(jī)電系統(tǒng)(Micro-Electro-Mechanical Systems,簡(jiǎn)稱MEMS)的能源供給主要依靠電池。而傳統(tǒng)電池存在功率密度低、質(zhì)量與體積較大、供電時(shí)間短、存在有毒物質(zhì)等問(wèn)題,限制了 MEMS的進(jìn)一步發(fā)展。故亟需研發(fā)能夠替代傳統(tǒng)電池的微型便攜式能量供給單元。碳?xì)淙剂暇邆渲T多優(yōu)點(diǎn),例如能量密度高,燃料補(bǔ)充迅速,燃燒產(chǎn)物為水和二氧化碳對(duì)環(huán)境無(wú)危害。因而基于碳?xì)淙剂先紵奈⑿湍茉磩?dòng)力系統(tǒng)成為現(xiàn)今最具潛力的微型便攜式能量供給單元替代方案。本文即是采用基于正丁烷燃燒的微熱機(jī)方案來(lái)開(kāi)發(fā)微發(fā)電系統(tǒng)取代傳統(tǒng)電池能源。在眾多微熱機(jī)方案中,本文選取微型自由擺動(dòng)式活塞發(fā)動(dòng)機(jī)方案。該方案運(yùn)轉(zhuǎn)頻率較低,活塞與氣缸間磨損較小,對(duì)材料強(qiáng)度、軸承及潤(rùn)滑等無(wú)特殊要求。其扇形對(duì)置氣缸結(jié)構(gòu)可有效提高空間利用率,故系統(tǒng)功率密度較高。此外發(fā)動(dòng)機(jī)為平面夾層結(jié)構(gòu),易于微加工和組裝。因此該方案是有可能最先實(shí)用化的一種微型能源動(dòng)力系統(tǒng)。本文基于三臂自由擺動(dòng)式活塞發(fā)動(dòng)機(jī)方案,開(kāi)展了相關(guān)發(fā)動(dòng)機(jī)系統(tǒng)理論與實(shí)驗(yàn)研究。本文第2章根據(jù)角動(dòng)量、質(zhì)量與能量等守恒方程推導(dǎo)出三臂擺式發(fā)動(dòng)機(jī)/發(fā)電機(jī)系統(tǒng)零維數(shù)值計(jì)算模型的控制方程組,并且還分別給出了泄漏、散熱與摩擦等損失模型以及燃燒模型。依托控制方程組、損失及燃燒模型給出了系統(tǒng)計(jì)算流程和收斂判據(jù)。然后,計(jì)算研究了擺式發(fā)動(dòng)機(jī)的運(yùn)轉(zhuǎn)特性和熱力循環(huán)過(guò)程。結(jié)果表明擺式發(fā)動(dòng)機(jī)具備自啟動(dòng)能力無(wú)需外部輔助設(shè)備,且發(fā)動(dòng)機(jī)啟動(dòng)迅速、運(yùn)轉(zhuǎn)過(guò)程無(wú)死點(diǎn)。兩沖程擺式發(fā)動(dòng)機(jī)穩(wěn)態(tài)運(yùn)轉(zhuǎn)下,其熱力循環(huán)可以近似為奧托循環(huán)。第3章完成了發(fā)動(dòng)機(jī)負(fù)載、進(jìn)氣、燃燒特征及尺寸等參數(shù)對(duì)系統(tǒng)性能影響的理論研究。對(duì)于負(fù)載參數(shù),固定質(zhì)量負(fù)載時(shí)存在最佳電負(fù)載扭矩系數(shù)使得系統(tǒng)熱效率或者指示功率最大。質(zhì)量負(fù)載越大,發(fā)動(dòng)機(jī)的電負(fù)載帶載能力明顯增強(qiáng),且所能達(dá)到的熱效率或者指示功率峰值也隨之增大。進(jìn)氣參數(shù)影響方面,進(jìn)氣口直徑較小時(shí),隨著進(jìn)氣壓力提高,發(fā)動(dòng)機(jī)熱效率逐漸升高。而進(jìn)氣口直徑較大時(shí),熱效率隨著進(jìn)氣壓力升高而下降。另一方面,進(jìn)氣壓力與進(jìn)氣口直徑越大,對(duì)應(yīng)的指示功率越高。針對(duì)燃燒特征參數(shù),燃燒持續(xù)時(shí)間一定時(shí)存在最優(yōu)點(diǎn)火提前系數(shù)使得發(fā)動(dòng)機(jī)熱效率或者指示功率最大化。且熱效率或者指示功率峰值隨燃燒持續(xù)時(shí)間增大而顯著下降。對(duì)于發(fā)動(dòng)機(jī)尺寸影響,不考慮各種損失時(shí)指示功率與發(fā)動(dòng)機(jī)尺寸呈現(xiàn)2次方正比關(guān)系。功率密度及運(yùn)轉(zhuǎn)頻率則與尺寸呈現(xiàn)1次方反比關(guān)系。熱效率和中心擺的擺幅幾乎不隨尺寸變化。此外第3章還對(duì)系統(tǒng)參數(shù)進(jìn)行了敏感性分析。計(jì)算結(jié)果表明熱效率對(duì)各參數(shù)的敏感性大小順序是:燃燒持續(xù)時(shí)間、進(jìn)氣口直徑進(jìn)氣壓力電負(fù)載扭矩系數(shù)點(diǎn)火提前系數(shù)質(zhì)量負(fù)載系數(shù)。而指示功率對(duì)各參數(shù)的敏感性大小順序是:進(jìn)氣壓力進(jìn)氣口直徑燃燒持續(xù)時(shí)間質(zhì)量負(fù)載系數(shù)電負(fù)載扭矩系數(shù)點(diǎn)火提前系數(shù)。第3章中還分別研究了泄漏、散熱和摩擦等損失對(duì)系統(tǒng)性能的影響,并分別揭示了各損失的作用機(jī)理,為損失調(diào)控措施指明方向。并且還比較了各損失的影響大小。結(jié)果表明各損失對(duì)擺式發(fā)動(dòng)機(jī)性能影響大小從高至低依次是:散熱泄漏摩擦。其中摩擦影響遠(yuǎn)小于前兩者。隨著發(fā)動(dòng)機(jī)尺寸縮小,泄漏對(duì)性能影響的增長(zhǎng)速度最快,其次是散熱損失。而摩擦損失增速緩慢且影響很小。在第4章中,基于簡(jiǎn)化的擺式發(fā)動(dòng)機(jī)實(shí)驗(yàn)平臺(tái)開(kāi)展了相關(guān)原理性實(shí)驗(yàn)研究。首先利用電機(jī)帶拖與無(wú)急回曲柄搖桿機(jī)構(gòu),開(kāi)展了發(fā)動(dòng)機(jī)氣密性實(shí)驗(yàn)研究。并結(jié)合泄漏數(shù)值計(jì)算,揭示了影響泄漏的關(guān)鍵參數(shù)。發(fā)現(xiàn)可以通過(guò)減小間隙大小或者提高發(fā)動(dòng)機(jī)運(yùn)轉(zhuǎn)頻率來(lái)抑制泄漏損失。隨后利用壓縮空氣模擬燃燒增壓來(lái)驅(qū)動(dòng)擺式發(fā)動(dòng)機(jī)運(yùn)轉(zhuǎn),完成了運(yùn)轉(zhuǎn)特性和能量轉(zhuǎn)換方面的實(shí)驗(yàn)研究。實(shí)驗(yàn)驗(yàn)證了自由擺動(dòng)式活塞發(fā)動(dòng)機(jī)快速啟停與快速負(fù)載響應(yīng)等運(yùn)轉(zhuǎn)特性。獲得了進(jìn)氣壓力及阻力扭矩、充氣時(shí)間、充氣提前等參數(shù)對(duì)發(fā)動(dòng)機(jī)壓縮比、運(yùn)轉(zhuǎn)頻率、(?)效率及指示功率等影響。結(jié)果表明進(jìn)氣壓力越小、充氣時(shí)間越短、充氣適當(dāng)提前時(shí)均利于發(fā)動(dòng)機(jī)效率的提升。而對(duì)于阻力扭矩,其存在最佳值使得效率最大化。此外還完成了擺式發(fā)動(dòng)機(jī)系統(tǒng)的發(fā)電實(shí)驗(yàn),結(jié)果顯示LED燈板負(fù)載兩端輸出電壓峰值為5.8V,相應(yīng)電功率峰值為6.3W。隨后搭建起樣機(jī)熱態(tài)實(shí)驗(yàn)平臺(tái),包括閉環(huán)點(diǎn)火控制和多參數(shù)動(dòng)態(tài)采集子系統(tǒng)等。采用正丁烷作為燃料,開(kāi)展了樣機(jī)的熱態(tài)單次點(diǎn)火燃燒實(shí)驗(yàn),驗(yàn)證了自由活塞、對(duì)置氣缸交替運(yùn)轉(zhuǎn)的結(jié)構(gòu)設(shè)計(jì)以及進(jìn)氣壓縮與膨脹排氣的兩沖程奧托循環(huán)熱力過(guò)程,表明自由擺動(dòng)式活塞發(fā)動(dòng)機(jī)方案具備技術(shù)可行性。此外基于開(kāi)環(huán)控制等時(shí)間間隔點(diǎn)火控制系統(tǒng),初步進(jìn)行了樣機(jī)的連續(xù)熱態(tài)運(yùn)轉(zhuǎn)實(shí)驗(yàn)研究,發(fā)現(xiàn)點(diǎn)火延遲及進(jìn)掃氣效率是影響發(fā)動(dòng)機(jī)運(yùn)轉(zhuǎn)特性的主要參數(shù)。最后基于簡(jiǎn)化樣機(jī)的原理性實(shí)驗(yàn)研究成果,改進(jìn)并優(yōu)化了三臂擺式發(fā)動(dòng)機(jī)的設(shè)計(jì)方案,完成了三臂式樣機(jī)加工。
[Abstract]:At present, the energy supply of microcomputers, micro robots and portable detection instruments, such as Micro-Electro-Mechanical Systems (MEMS), is mainly dependent on the battery. The traditional batteries have the problems of low power density, large mass, large volume, short supply time, and toxic substances, which restrict the further development of MEMS. Therefore, the further development of the batteries is limited. It is necessary to develop a miniature portable energy supply unit that can replace traditional batteries. Hydrocarbon fuels have many advantages, such as high energy density, rapid fuel supply, and no harm to the environment by the combustion products of water and carbon dioxide. Therefore, the micro energy power system based on the combustion of hydrocarbon fuels becomes the most potential micro portable energy. In this paper, a microgenerator system based on n-butane combustion is used to develop a micro generation system to replace the traditional battery energy. In a number of microthermal machines, this paper selects the mini free swing piston engine scheme. The scheme is low operating frequency, less wear between piston and cylinder, material strength, bearing and There is no special requirement for lubrication. The sector opposed cylinder structure can effectively improve the space utilization, so the power density of the system is high. In addition, the engine is a planar interlayer structure, and it is easy to micromachining and assembling. Therefore, the scheme is a possible first practical micro energy power system. This paper is based on the three arm free swing piston engine. In the second chapter, the control equations of the zero dimension numerical model of the three arm pendulum engine / generator system are derived from the conservation equations of angular momentum, mass and energy, and the loss models, such as leakage, heat dissipation and friction, and the combustion model are also given. The equations, the loss and the combustion model give the system calculation flow and the convergence criterion. Then, the operation characteristics and thermodynamic cycle process of the pendulum engine are calculated and studied. The results show that the pendulum engine has self starting capacity without external auxiliary equipment, and the engine starts quickly, the operation process has no dead point. The steady state of the two stroke pendulum engine. Under the operation, the thermodynamic cycle can be approximated to the Otto cycle. The third chapter has completed the theoretical study of the influence of the engine load, intake, combustion characteristics and size on the system performance. For the load parameters, the optimal load torque coefficient in the fixed mass load makes the system thermal efficiency or indicating power maximum. The greater the mass load, the greater the mass load, The electric load carrying capacity of the engine is obviously enhanced, and the thermal efficiency or the peak value of the indicated power is also increased. As the intake pressure increases, the engine thermal efficiency increases with the intake pressure increasing. While the intake pressure is larger, the thermal efficiency decreases with the increase of the intake pressure. The other side is reduced. The higher the inlet pressure and the inlet diameter, the higher the corresponding indicator power. For the combustion characteristic parameters, the optimal ignition advance coefficient makes the engine thermal efficiency or the indication power maximized when the combustion duration is certain. And the thermal efficiency or the peak value of the indicated power decreases significantly with the increase of combustion duration. For the engine, the engine is significantly reduced with the combustion duration. The relationship between the indicator power and the size of the engine has 2 square positive ratio. The power density and the operating frequency are in inverse proportion to the size of the 1 times. The thermal efficiency and the pendulum of the central pendulum almost do not change with the size. In addition, the sensitivity analysis of the system parameters is also carried out in the third chapter. The calculation results show that the thermal efficiency is correct. The order of the sensitivity of each parameter is the burning duration, the inlet pressure of the inlet pressure, the torque coefficient of the electric load and the mass load coefficient of the ignition advance coefficient, and the order of the sensitivity of the indicator power to the parameters is: the constant time mass load coefficient of the inlet pressure intake, the ignition advance coefficient of the torque coefficient of the electric load. In the third chapter, the effects of leakage, heat dissipation and friction on the performance of the system are also studied, and the mechanism of each loss is revealed, and the direction of the loss control measures is pointed out. And the impact of each loss is also compared. The results show that the effect of loss on the performance of the pendulum engine from high to low is: heat dissipation and leakage. Friction effect is far less than the former two. With the reduction of engine size, the effect of leakage on the performance is the fastest, followed by heat loss. And the friction loss is slow and small. In the fourth chapter, the experimental research on the simplified pendulum engine experimental platform is carried out. An experimental study of the engine airtightness is carried out without an emergency crank rocker mechanism, and the key parameters affecting the leakage are revealed with the numerical calculation of leakage. It is found that the leakage loss can be suppressed by reducing the gap size or increasing the engine operating frequency. Then the compressed air model is used to drive the tilting engine to drive the engine. The experimental research on the operation characteristics and energy conversion has been completed. The experiments verify the operation characteristics of the fast start stop and fast load response of the free swing piston engine. The effects of the intake pressure and resistance torque, the inflating time and the inflating advance on the engine compression ratio, the transfer frequency, the (?) efficiency and the indicated power are obtained. It is shown that the smaller the intake pressure, the shorter the inflating time and the appropriate advance for the aeration are all beneficial to the efficiency of the engine. And for the resistance torque, the best value has the maximum efficiency. In addition, the power generation experiment of the pendulum engine system has been completed. The results show that the peak of the output voltage of the two end of the LED lamp plate is 5.8V, and the peak value of the corresponding electric power is at the peak value. 6.3W. then set up a prototype thermal experimental platform, including closed loop ignition control and multi parameter dynamic acquisition subsystem. Using n-butane as fuel, a single ignition combustion experiment of the prototype was carried out. The structure design of the free piston, the alternate operation of the opposed cylinder and the two stroke Otto cycle of the air intake compression and the expansion exhaust were verified. The cyclic thermodynamic process shows that the scheme of the free swing piston engine has technical feasibility. In addition, based on the time interval ignition control system such as open loop control, the experimental research on the continuous hot state operation of the prototype is carried out preliminarily. It is found that the ignition delay and the inlet gas efficiency are the main parameters affecting the engine running characteristics. Finally, the simplified prototype is based on the simplified prototype. Based on the experimental research results, the design scheme of the three arm pendulum engine was improved and optimized, and the three arm prototype was completed.
【學(xué)位授予單位】:中國(guó)科學(xué)院工程熱物理研究所
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TK403
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前3條
1 鄭思明;雷靂;;青少年發(fā)展理論新進(jìn)展[A];第十屆全國(guó)心理學(xué)學(xué)術(shù)大會(huì)論文摘要集[C];2005年
2 張正娣;畢勤勝;;非光滑系統(tǒng)的非常規(guī)分岔問(wèn)題[A];第三屆全國(guó)動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2009年
3 安鎮(zhèn)文;張乃玲;;地震活動(dòng)的互信息研究[A];中國(guó)地震學(xué)會(huì)第九次學(xué)術(shù)大會(huì)論文摘要集——紀(jì)念李善邦先生百年誕辰[C];2002年
相關(guān)重要報(bào)紙文章 前1條
1 韓富剛 張榮菊;新時(shí)期歷史唯物主義的發(fā)展——三個(gè)代表理論[N];河北經(jīng)濟(jì)日?qǐng)?bào);2004年
相關(guān)博士學(xué)位論文 前1條
1 周雄;基于三臂自由擺動(dòng)式活塞發(fā)動(dòng)機(jī)的微型能源動(dòng)力系統(tǒng)理論與實(shí)驗(yàn)研究[D];中國(guó)科學(xué)院工程熱物理研究所;2017年
,本文編號(hào):2040817
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2040817.html