天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

碳纖維復(fù)合繩芯拉擠工藝的實(shí)驗(yàn)及建模研究

發(fā)布時(shí)間:2018-05-22 13:26

  本文選題:耐高溫環(huán)氧樹脂 + 碳纖維復(fù)合材料。 參考:《上海大學(xué)》2015年博士論文


【摘要】:隨著人們對(duì)電力需求的增加,電力公司難以在原基礎(chǔ)上通過增加傳輸線路的方式來增加電流以滿足消費(fèi)者需求,因此,需要對(duì)原使用的導(dǎo)線進(jìn)行革新。碳纖維復(fù)合材料由于其優(yōu)異的性能而廣泛應(yīng)用于航空航天、汽車以及基礎(chǔ)設(shè)施等領(lǐng)域,有學(xué)者將玻璃/碳纖維復(fù)合材料應(yīng)用于電力電纜行業(yè),取得了良好的效果,能夠用來替代傳統(tǒng)的鋼芯/殷鋼芯鋁絞線,這種混雜纖維增強(qiáng)芯比強(qiáng)度高、弧垂低、耐溫性好,運(yùn)行時(shí)能夠通過增大電流的方式以滿足用戶使用要求。但是這種增強(qiáng)芯并非沒有缺點(diǎn),其在生產(chǎn)及安裝過程中由于卷繞會(huì)產(chǎn)生內(nèi)部缺陷,導(dǎo)致在使用的過程中發(fā)生災(zāi)難性斷裂。為了增強(qiáng)復(fù)合芯導(dǎo)線的安全性能,可通過結(jié)構(gòu)設(shè)計(jì)的變化,制備復(fù)合繩芯來降低內(nèi)應(yīng)力以及增加其韌性。本文就制備高可靠性碳纖維復(fù)合繩芯關(guān)鍵技術(shù)進(jìn)行了實(shí)驗(yàn)及建模研究,主要內(nèi)容如下:通過選擇三種多官能團(tuán)環(huán)氧樹脂AG-70、AG-80、AFG-90,兩種酸酐固化劑甲基六氫苯酐(MHHPA)和甲基納迪克酸酐(MNA)以及促進(jìn)劑組成六種樹脂體系,對(duì)這六種體系進(jìn)行詳細(xì)的熱分析,確定以AG-80為主體樹脂,MHHPA為固化劑,將AG-80/MHHPA與促進(jìn)劑和脫模劑進(jìn)行多種配比下的熱分析及凝膠性能測(cè)試,確定用于制備碳纖維復(fù)合繩芯的樹脂基體組成及配比為:AG-80:MHHPA:2,4-EMI:INT-1890M=100:118.5:1.5:5。隨后對(duì)確定的樹脂基體進(jìn)行非等溫DSC測(cè)試,計(jì)算得到了其固化反應(yīng)動(dòng)力學(xué)方程,結(jié)果表明其反應(yīng)符合兩參數(shù)模型。通過測(cè)試不同溫度下樹脂基體的凝膠時(shí)間,建立了凝膠時(shí)間與設(shè)置溫度之間的函數(shù)關(guān)系。通過DMA測(cè)試了樹脂基體的粘彈性能,結(jié)果發(fā)現(xiàn)樹脂基體的玻璃化轉(zhuǎn)變溫度隨著測(cè)試頻率的增加而增加,在測(cè)試溫度范圍內(nèi),樹脂基體呈現(xiàn)出三個(gè)不同的狀態(tài)。樹脂基體的熱膨脹性能測(cè)試結(jié)果表明在升溫過程中的熱膨脹系數(shù)也并非恒定不變,其數(shù)值是隨著溫度的不同而變化的。用非等溫DSC方法研究了含/不含碳纖維的樹脂基復(fù)合材料的放熱性能,由于碳纖維的導(dǎo)熱性能良好以及脫模劑的擴(kuò)散作用,AMEI/CF體系比AMEI體系表觀活化能低,動(dòng)力學(xué)指前因子減小。通過外推法獲得了AMEI/CF體系的特征溫度,計(jì)算獲得了兩個(gè)體系的固化反應(yīng)動(dòng)力學(xué)方程,聯(lián)合特征溫度方程及凝膠時(shí)間與溫度的函數(shù)關(guān)系可以對(duì)拉擠工藝參數(shù)的設(shè)置進(jìn)行指導(dǎo)。對(duì)AMEI/CF體系進(jìn)行了熱失重測(cè)試,發(fā)現(xiàn)在300 oC以下時(shí),碳纖維體積分?jǐn)?shù)為58.8%的AMEI/CF體系穩(wěn)定性最好。測(cè)試了不同碳纖維體積分?jǐn)?shù)時(shí)的線膨脹系數(shù),發(fā)現(xiàn)其隨著溫度的變化區(qū)別很大,當(dāng)碳纖維體積分?jǐn)?shù)含量為58.8%時(shí),其線膨脹系數(shù)隨著溫度的變化波動(dòng)最小。用DMA測(cè)試了AMEI/CF體系的粘彈性能,由于碳纖維的剛性作用,儲(chǔ)能模量和損耗模量在玻璃態(tài)變化極小,而且其值比AMEI體系的值大得多。用數(shù)值模擬方法研究了拉擠工藝模具內(nèi)碳纖維/樹脂體系在非穩(wěn)態(tài)情況下固化度及溫度隨時(shí)間的變化關(guān)系,由于孔直徑(2mm)較小,且碳纖維傳熱性能好,發(fā)現(xiàn)在同一拉擠速度下,模具孔內(nèi)截面上設(shè)定位置的三點(diǎn)溫度變化趨勢(shì)相同,而且溫度差極小;在不同的拉擠速度下,孔內(nèi)中心線的溫度分布幾乎相同。在30cm/min的拉擠速度下,距中心線不同距離處的固化度曲線幾乎重合,在整個(gè)模具內(nèi)固化度沿著牽引方向一直增大。用數(shù)值模擬方法分析了碳纖維復(fù)合芯在不同條件下的彎曲性能,發(fā)現(xiàn)在所給定的彎曲模式下,其應(yīng)力及總位移與載荷呈線性關(guān)系,應(yīng)力與樣品長(zhǎng)度呈線性關(guān)系,但是總位移與樣品長(zhǎng)度呈三次函數(shù)關(guān)系,應(yīng)力及總位移與樣品直徑既不滿足線性關(guān)系,也不滿足三次函數(shù)關(guān)系,而是呈現(xiàn)指數(shù)函數(shù)關(guān)系,說明了應(yīng)力及總位移與直徑的關(guān)系更加復(fù)雜,同時(shí)給出了各種函數(shù)關(guān)系表達(dá)式。
[Abstract]:With the increase in demand for electricity, it is difficult for power companies to increase current by increasing transmission lines to meet consumer demand. Therefore, the original wire needs to be innovated. Carbon fiber composites should be widely used in aerospace, automotive, infrastructure and other fields because of its excellent performance. Some scholars have applied glass / carbon fiber composites to the power cable industry. It has achieved good results and can be used to replace the traditional steel core / aluminum strand of the Yin steel core. This hybrid fiber reinforced core has high strength, low sag and good temperature resistance. It can be used to meet the user's requirements by increasing the electric current in operation. In the process of production and installation, it can produce internal defects in the process of production and installation, resulting in disastrous fracture in the process of use. In order to enhance the safety performance of the composite core wire, the composite cords can be prepared to reduce the internal stress and increase its toughness by the change of the structure design. The key technology of fiber composite coring is studied and studied. The main contents are as follows: by selecting three kinds of multi-functional epoxy resin AG-70, AG-80, AFG-90, two kinds of anhydride curing agent methyl six hydrogen phthalic anhydride (MHHPA) and methyl Nadik anhydride (MNA) and accelerant to make up six kinds of resin systems, the six systems are analyzed in detail. It is determined that AG-80 is the main resin and MHHPA is a curing agent. The thermal analysis and gel performance test of AG-80/MHHPA with promoters and demoulding agents are used to determine the composition and ratio of the resin matrix used in the preparation of carbon fiber composite cords: AG-80:MHHPA:2,4-EMI:INT-1890M=100:118.5:1.5:5. is then used for the determination of the resin matrix. The kinetic equation of the curing reaction was obtained by the isothermal DSC test. The results showed that the reaction accorded with the two parameter model. By testing the gelation time of the resin matrix at different temperatures, the relationship between the gel time and the setting temperature was established. The viscoelastic properties of the resin matrix were tested by DMA. The results of the resin matrix glass were found. The transformation temperature increases with the increase of the test frequency. In the range of test temperature, the resin matrix presents three different states. The thermal expansion coefficient of the resin matrix shows that the thermal expansion coefficient is not constant during the heating process, and its numerical value varies with the temperature. The non isothermal DSC method is used to study the thermal expansion coefficient. The exothermic properties of the resin based composites containing / without carbon fiber are obtained. Due to the good thermal conductivity of carbon fibers and the diffusion of demoulding agents, the AMEI/CF system is lower than the apparent activation energy of the AMEI system and the kinetic pre finger factor decreases. The characteristic temperature of the AMEI/CF system is obtained by extrapolation, and the curing reaction of the two systems is calculated. The dynamic equation, the combined characteristic temperature equation and the function relationship between the gel time and the temperature can guide the setting of the pultrusion process parameters. The thermal weight loss test of the AMEI/CF system was carried out. It was found that the AMEI/CF system with the volume fraction of carbon fiber with the volume fraction of 58.8% was the best when the volume fraction of carbon fiber was below 300 oC. The coefficient of linear expansion is found to be very different with the change of temperature. When the volume fraction of carbon fiber is 58.8%, its linear expansion coefficient fluctuates with the change of temperature. The viscoelastic properties of the AMEI/CF system are measured with DMA. Because of the rigidity of carbon fiber, the energy storage modulus and loss modulus are very small in the glass state, and their values are more than AMEI. The value of the system is much larger. Numerical simulation is used to study the relationship between the curing degree and the temperature of the carbon fiber / resin system in the pultrusion mold under the unsteady state. The three point temperature change of the set position on the section of the die is found at the same pultrusion speed, because of the smaller hole diameter (2mm) and the good heat transfer performance of the carbon fiber. The trend is the same, and the temperature difference is very small. At different pultrusion speed, the temperature distribution of the center line in the hole is almost the same. At the pultrusion speed of 30cm/min, the curing degree curve at different distance from the center line almost coincides, the solid degree in the whole die has been increased along the traction direction. The carbon fiber composite is analyzed by the numerical simulation method. The bending behavior of the core under different conditions is found to have a linear relationship between the stress and the total displacement under the given bending mode. The stress is linear with the length of the sample, but the total displacement has three functional relations with the length of the sample. The stress and the total displacement do not satisfy the linear relationship with the sample diameter and do not meet the three function relations. It shows exponential function relationship, which shows that the relationship between stress and total displacement and diameter is more complicated. At the same time, expressions of various functional relations are given.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33;TM205

【參考文獻(xiàn)】

相關(guān)期刊論文 前4條

1 李紅;朱艷;寧榮昌;許磊;;環(huán)氧樹脂/酸酐固化體系的固化動(dòng)力學(xué)及耐熱性研究[J];粘接;2008年09期

2 任偉;趙洪凱;;拉擠工藝成型連續(xù)纖維增強(qiáng)熱塑性FRP的性能與應(yīng)用研究[J];吉林建筑工程學(xué)院學(xué)報(bào);2012年04期

3 李樹茂;林再文;王明寅;侯滌洋;王士巍;;氰酸酯復(fù)合材料纏繞成型工藝的研究[J];纖維復(fù)合材料;2010年03期

4 何亞飛;矯維成;楊帆;劉文博;王榮國;;樹脂基復(fù)合材料成型工藝的發(fā)展[J];纖維復(fù)合材料;2011年02期

,

本文編號(hào):1922240

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1922240.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a6ef2***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
午夜精品久久久免费视频| 黄色激情视频中文字幕| 五月天综合网五月天综合网| 免费在线播放不卡视频| 日韩午夜福利高清在线观看| 日韩欧美91在线视频| 中文字幕精品少妇人妻| 国产精品十八禁亚洲黄污免费观看 | 午夜色午夜视频之日本| 在线观看中文字幕91| 久久久精品日韩欧美丰满 | 日本加勒比在线播放一区| 欧美一区二区日韩一区二区| 成年人免费看国产视频| 一二区中文字幕在线观看| 日韩一区二区三区在线日| 国产精品欧美一级免费| 国产精品视频久久一区| 欧美日韩国内一区二区| 麻豆蜜桃星空传媒在线观看| 精品人妻一区二区三区免费看| 久久大香蕉精品在线观看| 国产女高清在线看免费观看| 国产av一二三区在线观看| 麻豆国产精品一区二区| 人妻巨大乳一二三区麻豆| 日本不卡片一区二区三区| 久久精品国产亚洲av麻豆尤物| 色婷婷中文字幕在线视频| 午夜精品福利视频观看 | 日韩欧美亚洲综合在线| 福利新区一区二区人口| 精品久久综合日本欧美| 日本福利写真在线观看| 日本人妻中出在线观看| 日本女优一区二区三区免费| 视频一区二区三区自拍偷| 免费在线成人激情视频| 国产日韩欧美在线亚洲| 色婷婷视频在线精品免费观看| 人妻巨大乳一二三区麻豆|