用于希瓦氏菌操控及檢測(cè)的微流體平臺(tái)研制與應(yīng)用研究
發(fā)布時(shí)間:2018-05-14 05:35
本文選題:微流體芯片 + 介電泳。 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:人類社會(huì)即將面臨能源危機(jī)和環(huán)境污染等困境,希瓦氏菌污染治理和綠色能源方面表現(xiàn)出巨大的潛力,因而獲得到了廣泛關(guān)注并掀起了研究熱潮。然而,過去的研究主要集中于群體水平至生物膜水平,不易探究精確的機(jī)理。直至2010年,基于單細(xì)菌或若干細(xì)菌(下文簡(jiǎn)稱為細(xì)菌層次)的多項(xiàng)精彩工作發(fā)表,希瓦氏菌的兩種電子傳遞機(jī)制獲得證明,這些工作的成功基于微納技術(shù)的引入。因此,希瓦氏菌細(xì)菌層次上的深入探究及定量檢測(cè)也需依賴于微納技術(shù)和微流控技術(shù)。微流體技術(shù)因其眾多優(yōu)勢(shì)已經(jīng)被廣泛應(yīng)用于分析化學(xué)、生命科學(xué)、藥學(xué)及環(huán)境科學(xué)中,然而在微流體平臺(tái)上進(jìn)行的原核細(xì)胞研究還處于起步階段,因原核細(xì)胞形狀差異大、尺寸較小(亞微米級(jí)別)、無規(guī)則自由運(yùn)動(dòng)等特點(diǎn)使得相關(guān)研究進(jìn)展困難。本文將研究對(duì)象聚焦于原核生物中具有特色的電化學(xué)活性菌的代表希瓦氏菌,目標(biāo)是實(shí)現(xiàn)希瓦氏菌在細(xì)菌層次的快速有效且無標(biāo)記的定量檢測(cè),以支持后續(xù)進(jìn)一步地探究。實(shí)現(xiàn)希瓦氏菌在細(xì)菌層次的檢測(cè)前提是制備細(xì)菌層次的樣品,而這種樣品制備也只能借助于微納技術(shù)及微流體相關(guān)技術(shù)?紤]到微流體芯片具有微型化與集成化兩大特征,本文的思路是先開發(fā)微型化的單元模塊,主要為細(xì)菌層次樣品制備的操控模塊及相關(guān)的檢測(cè)模塊,然后借助于開發(fā)這些單元模塊的經(jīng)驗(yàn),制作集成化的微流體芯片,實(shí)現(xiàn)希瓦氏菌細(xì)菌層次的操控及檢測(cè)。希瓦氏菌操控模塊的章節(jié)中,先后研制了三種操控基底,分別為被動(dòng)操控的微結(jié)構(gòu)陣列、側(cè)壁微電極的介電泳主動(dòng)操控及非接觸式微電極的主動(dòng)操控。這些操控模塊均能實(shí)現(xiàn)快速高通量無標(biāo)記的希瓦氏菌操控,其中被動(dòng)微結(jié)構(gòu)陣列無法提供穩(wěn)定的固定。本章也同時(shí)提出了希瓦氏菌的介電泳操控模型,建立了完整的操控體系。三種操控模塊的研制為后續(xù)微流體中操控模塊的開發(fā)與集成提供了基礎(chǔ)及經(jīng)驗(yàn)。希瓦氏菌檢測(cè)模塊的章節(jié)中,針對(duì)研究對(duì)象希瓦氏菌,開發(fā)了微流體中的光及電信號(hào)相關(guān)的檢測(cè)模塊。光學(xué)模塊以聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)膜為核心,以內(nèi)鎖結(jié)構(gòu)的接口為配件,開發(fā)了一體成型工藝制作PDMS微流體,支持在線監(jiān)測(cè)微流體通道并提升了通道中獲取希瓦氏菌精確信息的可能性。電學(xué)模塊中為下游的希瓦氏菌檢測(cè)制作了大面積的雙層電極基底,采用了測(cè)量電極-聚甲基丙烯酸甲酷(Polymethylmethacrylate,PMMA)絕緣層-介電泳操控電極三層結(jié)構(gòu)的設(shè)計(jì)。同時(shí)也提出了微流體漏液模型和解決方案。最后,以單元模塊開發(fā)積累的經(jīng)驗(yàn),設(shè)計(jì)制造了集成了介電泳捕獲、熒光檢測(cè)、拉曼檢測(cè)的微流體平臺(tái),用于希瓦氏菌在細(xì)菌層次上樣品制備和檢測(cè),實(shí)現(xiàn)了快速有效無標(biāo)記可計(jì)數(shù)的希瓦氏菌的定量捕獲及檢測(cè)。借助于模擬分析,我們對(duì)介電泳操控電極進(jìn)行優(yōu)化,設(shè)計(jì)了有微阱結(jié)構(gòu)的鈍化層,能夠與微流體平臺(tái)的其它部分協(xié)同,實(shí)現(xiàn)三點(diǎn)功能,即重排電場(chǎng)分布、確定捕獲區(qū)及測(cè)量區(qū)。微阱中被捕獲固定的希瓦氏菌可進(jìn)行精確的數(shù)目統(tǒng)計(jì),結(jié)果表明捕獲的希瓦氏菌數(shù)目及尺寸與微阱尺寸相關(guān)。最后對(duì)捕獲的希瓦氏菌進(jìn)行了初步的拉曼光譜檢測(cè),驗(yàn)證了微流體芯片同時(shí)具有樣品檢測(cè)的功能。
[Abstract]:The human society is facing the difficulties of energy crisis and environmental pollution. The pollution control and green energy show great potential. Therefore, we have received extensive attention and raised the upsurge of research. However, the past research focused on the level of the group to the biofilm level and was not easy to explore the precise mechanism until 2010. The two electron transfer mechanisms of habelli have been proved to be based on the introduction of micronanotechnology. Therefore, the deep exploration and quantitative detection on the level of the bacteria at the hagabelli bacteria need to be dependent on micro nanotechnology and microfluidic technology. Because of its many advantages, fluid technology has been widely used in analytical chemistry, life science, pharmacy and environmental science. However, the study of prokaryotic cells on the microfluidic platform is still in its infancy. Due to the large difference in the shape of the prokaryotic cells, the small size (sub micron grade), and the free movement of the cells, the related research progress is difficult. The aim is to realize the rapid, effective and unmarked quantitative detection of the bacteria at the bacterial level, in order to support further exploration. The sample preparation can only be prepared by micro nano technology and microfluidic related technology. Considering the micromation and integration of micro fluid chips, two characteristics are considered. The idea of this paper is to develop miniaturized unit modules, mainly for the control module and related detection modules prepared by bacteria level samples, and then to develop these sheets. With the experience of the meta module, integrated microfluidic chips are fabricated to realize the manipulation and detection of the bacteria level of the H. valsalis. In the chapter of the Bush control module, three kinds of manipulated substrates are developed, respectively, the passive manipulated microstructures, the main dynamic manipulation of the side wall microelectrodes and the active manipulation of the non-contact microelectrodes. The control module can achieve fast and high flux and unmarked hirwelli control, in which the passive microstructural array can not provide stable fixation. This chapter also proposes a hirvellic electrophoresis manipulation model and a complete control system. The development and integration of the three control modules is the development and integration of the control module in the continuous microfluidic. For the foundation and experience. In the chapter of the detection module of the H. bush, the detection module related to light and electrical signals in the microfluidic is developed for the study object of the study object. The optical module uses the Polydimethylsiloxane (Polydimethylsiloxane, PDMS) membrane as the core and the interface of the inner lock structure as the accessory, and develops the integrated forming process to make PDMS The microfluidic supports the on-line monitoring of the microfluidic channel and increases the possibility of obtaining the exact information of the hevale bacteria in the channel. In the electrical module, a large area of the double layer electrode substrate was fabricated for the detection of the lower hevale bacteria in the downstream, and the measuring electrode - Polymethylmethacrylate (PMMA) insulating layer - dielectrophoretic manipulation electrode The three layer structure is designed. At the same time, the micro fluid leakage model and solution are also proposed. Finally, with the experience of the unit module development, the microfluidic platform integrated with diphoretic capture, fluorescence detection and Raman detection is designed and manufactured, which is used for the preparation and detection of the samples of the bacteria at the level of bacteria. The quantitative capture and detection of the number of hewelli bacteria. With the aid of simulation analysis, we optimized the electrophoretic manipulated electrode and designed a passivation layer with micro well structure. It can cooperate with the other parts of the microfluidic platform to realize the three point function, that is to rearrange the electric field distribution, determine the capture area and the measurement area. The results showed that the number and size of the collected hewsv were related to the size of the microwell. Finally, a preliminary Raman spectrum detection was carried out for the collected hewsv bacteria, which proved that the microfluidic chip had the function of sample detection at the same time.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH79
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 張逸馳;蔣昭泓;劉穎;;電化學(xué)活性微生物在微生物燃料電池陽極中的應(yīng)用[J];分析化學(xué);2015年01期
,本文編號(hào):1886596
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1886596.html
最近更新
教材專著