天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

Cu-Sn化合物電流輔助定向生長與微焊點(diǎn)瞬態(tài)鍵合機(jī)理

發(fā)布時間:2018-04-25 14:08

  本文選題:電流輔助 + 固-液電遷移 ; 參考:《哈爾濱工業(yè)大學(xué)》2017年博士論文


【摘要】:信息、能源、空間探測等領(lǐng)域不斷要求功能更強(qiáng)、尺寸更小、可靠性更高的微電子器件。三維(3D)封裝技術(shù)作為新一代信息技術(shù)產(chǎn)業(yè)的重點(diǎn)發(fā)展領(lǐng)域,不僅使電子產(chǎn)品尺寸大幅度減少,性能大幅度提高,更使元件之間的互連長度從厘米級減少到亞微米級,相應(yīng)的微互連方法也將發(fā)生革命性變化。在“低溫連接、高溫服役”的目標(biāo)驅(qū)動下,全金屬間化合物(IMCs)焊點(diǎn)實(shí)現(xiàn)3D封裝疊層芯片互連引發(fā)高度關(guān)注,但傳統(tǒng)的整體加熱互連工藝,鍵合時間長、施加壓力大等工藝特點(diǎn)為器件帶來可靠性隱患。因此,如何快速、高效地制備可靠的全I(xiàn)MCs微焊點(diǎn)是3D封裝疊層芯片互連技術(shù)中亟待解決的問題之一。本論文基于電流焦耳熱效應(yīng)和電遷移促進(jìn)金屬原子固-液互擴(kuò)散的原理,通過施加104A/cm2量級的電流密度載荷,能夠在毫秒級時間內(nèi)實(shí)現(xiàn)IMCs定向生長的Cu-Sn微焊點(diǎn)鍵合,為3D封裝疊層芯片互連提供了一種快速、高效的新連接方法。通過試驗(yàn)和理論分析相結(jié)合的方法,詳盡地闡述了全Cu-Sn IMCs焊點(diǎn)電流輔助瞬態(tài)鍵合的相關(guān)機(jī)理、界面IMCs形貌演變規(guī)律、Cu/Sn界面固-液電遷移機(jī)制以及定向電流作用下Cu-Sn IMCs晶粒擇優(yōu)生長的原理,并對瞬態(tài)鍵合后微焊點(diǎn)的力學(xué)性能做出了評估。根據(jù)3D疊層芯片互連結(jié)構(gòu)特點(diǎn),分別設(shè)計了平行電極型和對接電極型兩種電流輔助瞬態(tài)鍵合模式。在平行電極模式下,通過對鍵合壓力、時間、電流密度載荷以及中間Sn釬料厚度等參數(shù)的優(yōu)化,在0.16MPa、電流密度載荷1.5×104A/cm2條件下鍵合200ms后制備了無孔洞等缺陷的目標(biāo)全Cu_3Sn焊點(diǎn);同時,對接電極模式下基于對鍵合溫度的調(diào)控,在不同電流密度載荷條件下鍵合180ms后制備了三種不同類型的全Cu-Sn IMCs焊點(diǎn)。利用選擇性化學(xué)腐蝕的方法對電流輔助瞬態(tài)鍵合界面IMCs三維形貌微觀組織進(jìn)行分析發(fā)現(xiàn):隨鍵合時間的增加,固-液界面成分過冷程度加大,界面Cu_6Sn_5形貌將由胞狀晶依次向胞狀樹枝晶、柱狀樹枝晶轉(zhuǎn)變,當(dāng)鍵合溫度超過Cu_6Sn_5熔點(diǎn),樹枝晶Cu_6Sn_5熔化并演變?yōu)樽杂蓸渲У腃u_3Sn,最終Sn釬料消耗完畢形成全Cu_3Sn微焊點(diǎn)。MATLAB求解熔融釬料中Cu原子總量的計算結(jié)果表明,較高溫度下的Cu原子固-液電遷移可以在毫秒量級時間內(nèi)為生成全Cu_3Sn微焊點(diǎn)提供充足的Cu原子。該Cu_3Sn焊點(diǎn)織構(gòu)具有高度的定向特征,在電流載荷下焊點(diǎn)中的Cu_3Sn晶粒均傾向于沿著[100]晶向擇優(yōu)生長,通過量子力學(xué)理論分析和投影面原子密度計算,證明Cu_3Sn的[100]方向?yàn)殡娮栎^小路徑。此外,剪切試驗(yàn)表明,焊點(diǎn)內(nèi)部IMCs的形貌、物相種類、成分比將對力學(xué)性能影響顯著,隨著鍵合時間和電流載荷的增加剪切強(qiáng)度隨之升高,定向生長的全Cu_3Sn焊點(diǎn)的剪切強(qiáng)度可以達(dá)到67.6MPa,約是鍵合初期Sn基焊點(diǎn)的2.3倍。在電流密度量級為102A/cm2、較低溫度條件下的固-液電遷移試驗(yàn)表明,通電初期,固-液電遷移促進(jìn)陽極一側(cè)Cu_6Sn_5的生長,而抑制陰極一側(cè)的生長,呈現(xiàn)明顯的極性效應(yīng)。隨后的生長動力學(xué)分析表明,相比于界面反應(yīng)中的晶界擴(kuò)散和體擴(kuò)散,Cu溶質(zhì)原子的固-液電遷移在陽極Cu_6Sn_5的生長中起到主導(dǎo)作用,且陽極Cu_6Sn_5平均厚度與時間呈直線關(guān)系。同時,固-液電遷移外延生長的Cu_6Sn_5晶粒取向分析表明,生長初期的Cu_6Sn_5傾向于沿著電阻路徑最小的[0001]方向擇優(yōu)生長,隨著電流密度載荷的增加,Cu_6Sn_5沿著[0001]方向定向生長的趨勢更加明顯。
[Abstract]:In the fields of information, energy, space exploration and other fields, the more powerful, smaller and more reliable microelectronic devices are required. As the key development field of the new generation of information technology industry, three-dimensional (3D) packaging technology not only reduces the size of the electronic products greatly, improves the performance greatly, but also reduces the interconnection length of the components from the centimeter level. Less to sub micron level, the corresponding micro interconnect method will also revolutionize. Under the target of "low temperature connection, high temperature service", full metal intermetallic compound (IMCs) solder joint of 3D package laminated chip interconnects highly concerned, but the traditional integrated heating and interconnect technology, long bonding time, high pressure and so on are the characteristics of the process. Therefore, how to quickly and efficiently prepare the reliable full IMCs micro solder is one of the problems to be solved in the 3D package laminated chip interconnection technology. This paper is based on the principle of the Joule thermal effect and electromigration to promote the solid to liquid mutual diffusion of metal atoms. By applying the current density load in the order of 104A/cm2, the current density load can be applied. Cu-Sn micro solder joint bonding for IMCs directional growth in millisecond time provides a fast and efficient new connection method for 3D laminated chip interconnection. Through the combination of experimental and theoretical analysis, the related mechanism of transient bonding of the full Cu-Sn IMCs welding point current assisted transient bonding, the evolution law of the interface IMCs morphology, Cu/S The mechanism of solid liquid electromigration in n interface and the principle of preferential growth of Cu-Sn IMCs grains under the action of directional current are used to evaluate the mechanical properties of the micro solder joints after transient bonding. According to the characteristics of the interconnection structure of 3D laminated chips, two kinds of parallel electrode mode and butt electrode type are designed respectively. The parallel electrode mode is designed in parallel electrode mode. By optimizing the bonding pressure, time, current density load and the thickness of the intermediate Sn solder, the target all Cu_3Sn solder joint with no holes and other defects was prepared after bonding 200ms under the condition of 0.16MPa and current density load of 1.5 x 104A/cm2. At the same time, the joint electrode mode was based on the control of the bonding temperature in different current density loads. Three different types of all Cu-Sn IMCs solder joints were prepared after bonding with 180ms. By selective chemical etching, the microstructures of the three dimensional morphology of the transient bonding interface IMCs were analyzed by the method of selective chemical etching. It was found that the supercooling degree of the solid to liquid interface was increased with the increasing of bonding time, and the morphology of the interface Cu_6Sn_5 would be in turn from the cell crystal to the morphology. The dendritic crystal and columnar dendrite change, when the bonding temperature exceeds the Cu_6Sn_5 melting point, the dendrite Cu_6Sn_5 melts and evolves into the free dendrite Cu_3Sn. Finally, the calculation of the total Cu_3Sn micro solder joint.MATLAB to solve the total Cu atom in the molten solder of the Cu_3Sn micro solder.MATLAB shows that the Cu atom solid liquid electricity migration at the higher temperature can be at the higher temperature. In millisecond order of time, sufficient Cu atoms are provided for generating full Cu_3Sn micro solder. The Cu_3Sn solder joint texture has high directional characteristics. Under current load, the Cu_3Sn grains in the solder joints tend to grow along the [100] crystal. The [100] direction of Cu_3Sn is proved by the quantum mechanics theory analysis and the calculation of the projection surface's original density. In addition, the shear test shows that the morphology, phase type and composition ratio of IMCs in the solder joint will affect the mechanical properties significantly. With the increasing of the bonding time and current load, the shear strength of the all Cu_3Sn solder joint can reach 67.6MPa, which is about 2.3 times that of the bonding point at the early bonding of the Sn. The flow density is 102A/cm2, and the solid liquid electromigration test under the lower temperature shows that the solid to liquid electricity migration promotes the growth of the anode side Cu_6Sn_5, while the growth of the cathode side is inhibited. The subsequent growth kinetics analysis shows that Cu dissolves in the grain boundary diffusion and body diffusion in the interface reaction. The solid liquid electromigration of the mass atom plays a leading role in the growth of the anode Cu_6Sn_5, and the average thickness of the anode Cu_6Sn_5 has a linear relationship with the time. At the same time, the Cu_6Sn_5 grain orientation analysis of the growth of the solid liquid electromigration epitaxy indicates that the early growth of Cu_6Sn_5 tends to grow along the [0001] direction with the smallest resistance path, with the current of the growth. With the increase of density loading, the tendency of Cu_6Sn_5 to grow along [0001] direction is more obvious.

【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TG40

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 余少兵,李永紅,陳洪鈁;沸石膜的修飾及其定向生長[J];天津化工;2001年06期

2 蘇根博,賀友平,李征東,江日洪,朱長武;用于濾波器的圓柱形硫酸鎳晶體的定向生長[J];人工晶體學(xué)報;2000年01期

3 曾惠丹;劉釗;范茬興;任晶;陳國榮;邱建榮;;定向生長非線性光學(xué)微晶玻璃的制備[J];硅酸鹽學(xué)報;2013年04期

4 梅向陽;馬文會;魏奎先;戴永年;;多晶硅定向生長的實(shí)驗(yàn)研究[J];鑄造技術(shù);2010年06期

5 田曉霞;屈紹波;王斌科;張武森;趙建峰;;超高溫壓電陶瓷CaBi_2Nb_2O_9的定向生長及性能[J];中國科學(xué):化學(xué);2011年11期

6 李紅;郭振招;薛博;;有序PCL支架的制備與對細(xì)胞的定向生長作用[J];高分子材料科學(xué)與工程;2012年10期

7 蔣智強(qiáng);;二維云母界面對晶體定向生長的誘導(dǎo)作用研究[J];大學(xué)物理實(shí)驗(yàn);2013年04期

8 沈軍,李金山,李建國,傅恒志,曾凡昌,崔正山;電磁自約束定向生長條件下影響溫度場的若干因素[J];中國有色金屬學(xué)報;1996年04期

9 王孝平;賃敦敏;廖運(yùn)文;肖定全;;無鉛壓電陶瓷粉體的制備和晶粒定向生長技術(shù)[J];材料導(dǎo)報;2005年10期

10 趙麗麗,趙鳴,張昌松,樊慧慶,田長生;PbO/B_2O_3添加劑對PMNT多晶體定向生長的影響[J];功能材料;2004年03期

相關(guān)會議論文 前6條

1 劉海林;劉波;田景華;孔德生;陳招斌;毛秉偉;謝兆雄;田中群;;在芯片上微電極間定向生長單根Ag納米線的初步研究[A];第十三次全國電化學(xué)會議論文摘要集(下集)[C];2005年

2 劉祖琴;唐東升;鄒小平;李玉寶;周維亞;王剛;解思深;;化學(xué)氣相沉積法無催化制備定向生長硅納米棒[A];第一屆全國納米技術(shù)與應(yīng)用學(xué)術(shù)會議論文集[C];2000年

3 譚明;鄧元;王瑤;張志偉;梁立興;;定向生長A_2Te_3(A=Sb,Bi)熱電薄膜及其器件研究[A];2011中國材料研討會論文摘要集[C];2011年

4 張政軍;;碳納米管的可控制定向生長研究[A];TFC'05全國薄膜技術(shù)學(xué)術(shù)研討會論文摘要集[C];2005年

5 陳立凡;李方華;;快速定向生長中的Al—Cu—Co—Ge十次對稱準(zhǔn)晶[A];第八次全國電子顯微學(xué)會議論文摘要集(Ⅱ)[C];1994年

6 馬艷紅;劉豐珍;朱美芳;劉金龍;;應(yīng)用于徑向電池的硅納米棒的定向生長[A];第十屆中國太陽能光伏會議論文集:迎接光伏發(fā)電新時代[C];2008年

相關(guān)重要報紙文章 前1條

1 呂紀(jì)增;玉米定向結(jié)穗有辦法[N];農(nóng)民日報;2004年

相關(guān)博士學(xué)位論文 前5條

1 劉寶磊;Cu-Sn化合物電流輔助定向生長與微焊點(diǎn)瞬態(tài)鍵合機(jī)理[D];哈爾濱工業(yè)大學(xué);2017年

2 汪鑫偉;AZ31鎂合金電流輔助微成形建模及機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2016年

3 姜新闊;環(huán)形密封瞬態(tài)流場模擬及其動力學(xué)特性研究[D];浙江大學(xué);2016年

4 胡嘉華;復(fù)雜分子體系及光催化微納體系的飛秒瞬態(tài)吸收光譜研究[D];中國科學(xué)技術(shù)大學(xué);2016年

5 辜峙敇;鉛基研究實(shí)驗(yàn)堆無保護(hù)瞬態(tài)安全特性分析[D];中國科學(xué)技術(shù)大學(xué);2017年

相關(guān)碩士學(xué)位論文 前10條

1 貝國平;Ti_2SnC的合成及其晶粒定向生長的研究[D];北京交通大學(xué);2007年

2 游金程;多熱源功率器件瞬態(tài)熱阻測試技術(shù)研究及影響因素分析[D];華南理工大學(xué);2015年

3 閆振宇;高匯聚太陽能流下甲烷水蒸氣重整制氫的瞬態(tài)特性的研究[D];哈爾濱工業(yè)大學(xué);2015年

4 汪曉華;手持式瞬態(tài)磁場記錄儀硬件設(shè)計與實(shí)現(xiàn)[D];電子科技大學(xué);2014年

5 杜默;手持式變電站瞬態(tài)磁場記錄儀軟件設(shè)計與實(shí)現(xiàn)[D];電子科技大學(xué);2014年

6 王汀利;離線瞬態(tài)社會網(wǎng)絡(luò)動態(tài)鏈接及簇預(yù)測研究[D];江西財經(jīng)大學(xué);2015年

7 賈振華;基于數(shù)據(jù)提取技術(shù)的分布式瞬態(tài)壓力測試系統(tǒng)[D];中北大學(xué);2016年

8 王子杰;典型轎車瞬態(tài)氣動特性實(shí)驗(yàn)研究[D];吉林大學(xué);2016年

9 高雅;增壓柴油機(jī)排氣流固換熱的穩(wěn)態(tài)與瞬態(tài)模擬對比分析[D];山東大學(xué);2016年

10 連利波;面向智能變電站的瞬態(tài)磁場干擾測量技術(shù)研究[D];電子科技大學(xué);2016年



本文編號:1801642

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1801642.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e59ce***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com