利用鋼渣制備高鈣高鐵陶瓷的基礎(chǔ)及應(yīng)用研究
本文選題:鋼渣 + 陶瓷 ; 參考:《北京科技大學(xué)》2017年博士論文
【摘要】:工業(yè)的快速發(fā)展產(chǎn)生了大量的固體廢棄物,其不僅占用大量土地,而且污染環(huán)境,嚴(yán)重制約了社會(huì)的可持續(xù)發(fā)展。陶瓷不但能夠?qū)?fù)雜化學(xué)組分的硅酸鹽固廢轉(zhuǎn)變?yōu)閮?yōu)良性能的材料,而且具有高的附加值。另一方面,陶瓷工業(yè)具備消納大宗固廢的能力,并且隨著優(yōu)質(zhì)原料的減少和自然資源開(kāi)采的限制,陶瓷工業(yè)也面臨著利用低品位礦物或工業(yè)固廢的巨大需求。因此,制備陶瓷材料是利用固廢的一條有效途徑。傳統(tǒng)的粘土-長(zhǎng)石-石英三元陶瓷屬于K2O(Na2O)-Al2O3-SiO2體系,其要求CaO和Fe2O3組分含量分別小于3wt.%和1wt.%,而鋼渣、赤泥等固體廢棄物中的CaO含量超過(guò)35wt.%,Fe2O3含量超過(guò)10.wt%,限制了這類高鈣高鐵固廢在傳統(tǒng)三元陶瓷中的大規(guī)模利用。近年來(lái),CaO-MgO-SiO2-Fe2O3-Al2O3 (CMSFA)體系陶瓷(硅鈣陶瓷)被證實(shí)能夠大量利用高鈣高鐵的原料并且力學(xué)性能優(yōu)良,具有良好的應(yīng)用前景。但是關(guān)于該新型陶瓷體系的燒結(jié)過(guò)程和致密化機(jī)理尚缺乏系統(tǒng)研究,制約了其產(chǎn)業(yè)化應(yīng)用。本文以典型的高鈣高鐵的鋼渣為原料進(jìn)行利用固廢制備硅鈣陶瓷材料的研究,利用FactSage軟件,X射線衍射技術(shù),掃描電子顯微鏡,相圖等手段對(duì)新型的CMSFA陶瓷體系的燒結(jié)過(guò)程和致密化機(jī)理、關(guān)鍵元素鋁和鐵等對(duì)陶瓷燒結(jié)過(guò)程和性能的影響機(jī)理、燒結(jié)工藝過(guò)程和性能的優(yōu)化等問(wèn)題進(jìn)行了系統(tǒng)的研究,并進(jìn)一步開(kāi)展了工業(yè)化實(shí)驗(yàn),取得的研究成果如下:(1)根據(jù)晶相組成及其對(duì)陶瓷物理力學(xué)性能的差異,確定了在陶瓷制備的組成范圍內(nèi)CMSFA陶瓷體系的進(jìn)一步劃分準(zhǔn)則,即根據(jù)陶瓷組分中的氧化鎂和氧化鋁含量不同,可劃分為:①組分中MgO10wt.%時(shí)為輝石體系陶瓷,此時(shí)主晶相為輝石,燒結(jié)溫度1180~1220℃,抗折強(qiáng)度90~50MPa;②組分中MgO10wt.%,10wt.5Al2O315wt.%時(shí)為輝石-鈣長(zhǎng)石共存體系陶瓷,此時(shí)主晶相為輝石和鈣長(zhǎng)石,燒結(jié)溫度1130-1180℃,抗折強(qiáng)度60~100MPa;③組分中MgO5wt.5,Al2O315wt.%時(shí)為鈣長(zhǎng)石體系陶瓷,此時(shí)主晶相為鈣長(zhǎng)石,燒結(jié)溫度1100~1130℃,抗折強(qiáng)度30~75MPa;④組分中MgO5wt%, Al2O35wt.%時(shí)為石英-輝石共存體系陶瓷,此時(shí)主晶相為石英和輝石,燒結(jié)溫度1220-1250℃,抗折強(qiáng)度50-90MPa。(2)鐵元素在輝石陶瓷中起到促進(jìn)致密化和增強(qiáng)晶相兩方面的有益作用:在缺少堿金屬離子的CMASF體系中,含鐵組分具有助熔作用,促進(jìn)液相形成和致密化進(jìn)行。同時(shí),部分鐵離子在液相燒結(jié)階段固溶進(jìn)入透輝石相中,使得透輝石轉(zhuǎn)化為性能更加優(yōu)良的普通輝石相。但是鐵元素含量過(guò)高不利于陶瓷燒結(jié)和性能提升。本研究證實(shí)10wt.%的Fe2O3對(duì)于輝石體系陶瓷的燒結(jié)過(guò)程具有促進(jìn)作用;添加5wt.% Fe2O3樣品的抗折強(qiáng)度為132.9MPa,比未添加Fe2O3和添加10wt.%Fe2O3的樣品分別提高83.35MPa和68.45MPa。(3)與傳統(tǒng)三元陶瓷體系不同,輝石陶瓷體系的燒結(jié)過(guò)程可以劃分為:原料脫水及分解(800℃)、初結(jié)晶(700~1100℃)和致密化與二次析晶(1100~1220℃)三個(gè)階段。CaO和Fe2O3組分在輝石陶瓷體系燒結(jié)過(guò)程中起到了關(guān)鍵作用。不同燒結(jié)溫度下的樣品的XRD和SEM分析表明:CaO在700~1100℃時(shí)與粘土和滑石等原料的分解產(chǎn)物生成鈣長(zhǎng)石、透輝石等,促進(jìn)了樣品在致密化過(guò)程之前完成初結(jié)晶過(guò)程,生成的晶體在后續(xù)燒結(jié)過(guò)程中起到重要的骨架支撐作用;在1150℃時(shí)鈣鐵榴石等含鐵組分形成液相促進(jìn)了樣品的快速致密化,并且由于液相的產(chǎn)生促進(jìn)了二次析品過(guò)程的進(jìn)行,使得制品形成單一的輝石相,有助于力學(xué)性能的提升。(4)輝石體系陶瓷的燒結(jié)范圍比鈣長(zhǎng)石體系窄,其原因在于液相的生成溫度接近于主晶相軟化溫度,液相量隨燒結(jié)溫度的升高而急劇增加;添加B203助熔劑對(duì)改善輝石陶瓷燒結(jié)范圍的效果最優(yōu),添加5wt.%B2O3樣品的燒結(jié)范圍從1200~1220℃降低并拓寬至1100-1150℃,抗折強(qiáng)度仍達(dá)到102.5MPa。(5)開(kāi)展了輝石和鈣長(zhǎng)石體系陶瓷的工業(yè)化生產(chǎn)實(shí)驗(yàn)。在陶瓷生產(chǎn)線上成功的制備了以鋼渣為主要原料的輝石陶瓷磚,燒結(jié)溫度1180℃,燒成時(shí)間75min,制品的平均抗折強(qiáng)度為93.4MPa,吸水率0.045%,施釉效果良好,表明該體系陶瓷適宜現(xiàn)有的陶瓷工藝,并且具有優(yōu)良的性能,利于其推廣應(yīng)用。以劣質(zhì)礦物和尾礦為原料,成功的進(jìn)行了鈣長(zhǎng)石體系陶瓷工業(yè)化實(shí)驗(yàn),劣質(zhì)陶土和鋁土礦尾礦的摻加量達(dá)83wt.%,燒結(jié)溫度1130℃,燒成時(shí)間36min,實(shí)現(xiàn)了低溫快燒,制品的抗折強(qiáng)度35.2MPa,吸水率0.2%。工業(yè)化實(shí)驗(yàn)表明,基于鋼渣為主要原料所建立的硅鈣陶瓷理論體系具有較強(qiáng)的原料適用性和廣泛的可推廣性,為大量高鈣高鐵的大宗固體廢棄物和低品位礦物在陶瓷工業(yè)的高效利用奠定了技術(shù)基礎(chǔ)。
[Abstract]:The rapid development of industry produces a large amount of solid waste, which not only occupies a large amount of land, but also pollutes the environment, which seriously restricts the sustainable development of the society. Ceramics can not only transform the silicate solid waste of complex chemical components into excellent properties, but also have high added value. On the other hand, the ceramic industry has a large amount of elimination. With the ability to fix the waste, and with the reduction of high quality raw materials and the limitation of natural resource exploitation, the ceramic industry is also faced with the huge demand for the use of low grade minerals or industrial solid waste. Therefore, the preparation of ceramic materials is an effective way to use solid waste. The traditional clay feldspar stone three yuan ceramics belong to the K2O (Na2O) -Al2O3-SiO2 system, The content of CaO and Fe2O3 components is less than 3wt.% and 1wt.%, and the CaO content in solid wastes such as steel slag and red mud is more than 35wt.% and Fe2O3 content exceeds 10.wt%, which restricts the large-scale utilization of this kind of high calcium high iron solid waste in traditional three Yuan Ceramics. In recent years, CaO-MgO-SiO2-Fe2O3-Al2O3 (CMSFA) system ceramics (silica Calcium Ceramics) have been proved to be able to be used. The high calcium and high iron material has good application prospects. However, the sintering process and densification mechanism of the new ceramic system are still lacking systematic research, which restricts the application of its industrialization. In this paper, calcium silicate ceramic materials are prepared by using the typical high calcium and high iron slag as raw materials for the preparation of silica calcium ceramics. By using FactSage software, X ray diffraction, scanning electron microscope and phase diagram, the sintering process and densification mechanism of the new CMSFA ceramic system, the influence mechanism of aluminum and iron on the sintering process and properties of the key elements, the process of sintering and the optimization of sexual energy are systematically studied. The industrialization experiment was carried out step by step. The results obtained are as follows: (1) according to the composition of crystal phase and the difference of the physical and mechanical properties of ceramics, the further division criterion of CMSFA ceramic system in the composition range of ceramics is determined, that is, according to the different content of Magnesium Oxide and alumina in the ceramic components, it can be divided into: (1) MgO10 Wt.% is pyroxene system ceramics, at this time the main crystal phase is pyroxene, the sintering temperature is 1180~1220 degrees C and the flexural strength is 90 ~ 50MPa; (2) the MgO10wt.% and 10wt.5Al2O315wt.% are pyroxene calcium feldspar coexisting ceramics in the composition of the components. At this time the main crystal phase is pyroxene and calcite, the sintering temperature is 1130-1180, and the flexural strength is 60 to 100MPa; (3) MgO5wt.5, Al2O in the components. 315wt.% is calcium feldspar system ceramics, at this time the main crystal phase is calcite, the sintering temperature is 1100~1130 C and the flexural strength is 30 ~ 75MPa; (4) the MgO5wt% and Al2O35wt.% in the component are quartz pyroxene coexisting system ceramics, at this time the main crystal phase is quartz and pyroxene, the sintering temperature is 1220-1250, and the flexural strength 50-90MPa. (2) iron element is in the pyroxene ceramics It is beneficial to promote densification and enhance crystalline phase two. In the CMASF system lacking alkali metal ions, the iron containing components can help melt and promote the formation and densification of liquid phase. At the same time, some iron ions are dissolved into the diopside phase in the phase of liquid phase sintering, making diopside into more excellent ordinary pyroxene. However, the high content of iron is not conducive to the sintering and performance improvement of ceramics. This study confirms that the Fe2O3 of 10wt.% has a promoting effect on the sintering process of the pyroxene system ceramics, and the flexural strength of the 5wt.% Fe2O3 sample is 132.9MPa, and the 83.35MPa and 68.45MPa. (3) and the tradition are higher than that of the samples without Fe2O3 and adding 10wt.%Fe2O3. Different three yuan ceramic system, the sintering process of pyroxene ceramic system can be divided into two stages: raw material dehydration and decomposition (800 degrees C), initial crystallization (700~1100) and densification and two crystallization (1100~1220 C) three stages.CaO and Fe2O3 components play a key role in the sintering process of pyroxene ceramic system. The XRD of samples at different sintering temperatures And SEM analysis shows that the decomposition products of CaO at 700~1100 C and clay and talcum produce calcium feldspar, diopside and so on, which promote the sample to complete the initial crystallization process before the densification process, and the resulting crystal plays an important framework supporting role in the subsequent sintering process, and the formation liquid of iron containing ferric garnet at 1150. The phase accelerates the rapid densification of the samples, and the formation of the liquid phase promotes the progress of the two crystallization process, which makes the product form a single pyroxene phase and helps to improve the mechanical properties. (4) the sintering range of the pyroxene system ceramics is narrower than the calcite system, because the formation temperature of the liquid phase is close to the phase softening temperature of the main crystal. With the increase of sintering temperature, the addition of B203 flux to improve the sintering range of pyroxene ceramics is the best. The sintering range of adding 5wt.%B2O3 samples is reduced from 1200~1220 to 1100-1150, and the flexural strength is still 102.5MPa. (5) in the industrial production experiment of pyroxene and calcium feldspar system ceramics. The pyroxene ceramic tile with steel slag as the main raw material is prepared successfully on the ceramic production line. The sintering temperature is 1180 C and the sintering time is 75min. The average flexural strength of the products is 93.4MPa, the water absorption rate is 0.045% and the glazing effect is good. It shows that the ceramic system is suitable for the existing ceramic technology, and has excellent properties and is good for its application. Inferior quality is poor quality. Minerals and tailings are used as raw materials to successfully carry out the industrialization experiment of calcium feldspar system ceramics. The addition amount of inferior pottery clay and bauxite tailings reaches 83wt.%, sintering temperature is 1130 degrees C, and the sintering time is 36min. It realizes low temperature fast burning, the flexural strength of products is 35.2MPa, water absorption 0.2%. industrial experiment shows that the silicon based on steel slag is the main raw material. The theoretical system of Calcium Ceramics has strong applicability and extensive popularization, which lays a technical foundation for the high efficiency utilization of large amount of high calcium and high iron solid waste and low grade minerals in the ceramic industry.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ174.46
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張春雷;國(guó)內(nèi)外鋼渣再利用技術(shù)發(fā)展動(dòng)態(tài)及對(duì)鞍鋼開(kāi)發(fā)鋼渣產(chǎn)品的探討[J];鞍鋼技術(shù);2003年04期
2 秦萍;鋼渣治理與利用技術(shù)的進(jìn)展[J];沿海環(huán)境;2003年01期
3 陳盛建,高宏亮;鋼渣綜合利用技術(shù)及展望[J];南方金屬;2004年05期
4 楊傳舉;濟(jì)鋼鋼渣綜合利用現(xiàn)狀和建議[J];中國(guó)資源綜合利用;2004年12期
5 任玉森,張宏偉,顧德仁,楊廣福,陳亮;鋼渣在農(nóng)業(yè)領(lǐng)域的應(yīng)用研究(一)[J];寶鋼技術(shù);2005年03期
6 冷光榮,朱美善;鋼渣處理方法探討與展望[J];江西冶金;2005年04期
7 黃勇剛,狄煥芬,祝春水;鋼渣綜合利用的途徑[J];工業(yè)安全與環(huán)保;2005年01期
8 管建紅;寶鋼鋼渣處理技術(shù)的發(fā)展及其產(chǎn)品特點(diǎn)[J];冶金叢刊;2005年01期
9 李燦華;鐘風(fēng)萬(wàn);;鋼渣治理與利用技術(shù)的進(jìn)展[J];武鋼技術(shù);2006年01期
10 張立國(guó);于淑娟;袁慧;任偉;;鞍鋼鋼渣綜合利用現(xiàn)狀與分析[J];中國(guó)冶金;2008年09期
相關(guān)會(huì)議論文 前10條
1 朱桂林;楊景玲;李可;孫樹(shù)杉;;科學(xué)選擇鋼渣處理工藝,加快鋼渣綜合利用[A];2005中國(guó)鋼鐵年會(huì)論文集(第2卷)[C];2005年
2 寧新周;張計(jì)民;張維召;李世興;王靜;;國(guó)內(nèi)鋼渣處理和應(yīng)用方式的調(diào)查分析[A];鋼鐵渣處理利用先進(jìn)工藝與設(shè)備研討會(huì)論文集[C];2006年
3 申桂秋;;鋼渣綜合利用現(xiàn)狀及發(fā)展動(dòng)向[A];全國(guó)冶金工業(yè)固體廢棄物處理利用先進(jìn)工藝與設(shè)備研討會(huì)論文集[C];2007年
4 孫嵬;馬剛平;;遷鋼鋼渣處理工程生產(chǎn)實(shí)踐研究[A];冶金循環(huán)經(jīng)濟(jì)發(fā)展論壇論文集[C];2008年
5 姜緒華;;鋼渣“熱潑悶渣”工藝在生產(chǎn)中應(yīng)用[A];2011年全國(guó)冶金安全環(huán)保學(xué)術(shù)交流會(huì)論文集[C];2011年
6 葉冰;時(shí)秋穎;;淺談鋼渣綜合利用途徑及處理工藝的選擇[A];2011年全國(guó)冶金安全環(huán)保學(xué)術(shù)交流會(huì)論文集[C];2011年
7 葉冰;;淺談鋼渣處理工藝的選擇[A];2012年全國(guó)冶金安全環(huán)保暨能效優(yōu)化學(xué)術(shù)交流會(huì)論文集[C];2012年
8 靳松;;鋼渣處理方法和有效利用的比較分析[A];全國(guó)冶金自動(dòng)化信息網(wǎng)2010年年會(huì)論文集[C];2010年
9 張作順;徐利華;余廣煒;唐衛(wèi)軍;孫鵬輝;郝洪順;賽音巴特爾;翟偉;;國(guó)內(nèi)鋼渣處理方法及資源化利用的研究進(jìn)展[A];2010年全國(guó)能源環(huán)保生產(chǎn)技術(shù)會(huì)議文集[C];2010年
10 王賢慧;朱立江;;鋼渣處理國(guó)內(nèi)外的現(xiàn)狀及發(fā)展趨勢(shì)[A];2010年全國(guó)煉鋼—連鑄生產(chǎn)技術(shù)會(huì)議文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 羅耀華;寶鋼自主研發(fā)的鋼渣處理技術(shù)首度輸出國(guó)門[N];中國(guó)冶金報(bào);2007年
2 記者 郭品文 通訊員 張浪 張子弘;韶鋼50萬(wàn)噸鋼渣處理生產(chǎn)線成功試產(chǎn)[N];中國(guó)冶金報(bào);2007年
3 霍峰邋本報(bào)通訊員 葉柏;青鋼第三條鋼渣處理線投入運(yùn)營(yíng)[N];青島日?qǐng)?bào);2007年
4 全國(guó)冶金節(jié)能減排新技術(shù)知識(shí)競(jìng)賽組委會(huì)專家組;他山之石助力我國(guó)鋼渣處理[N];中國(guó)冶金報(bào);2009年
5 ;國(guó)內(nèi)率先采用轉(zhuǎn)爐熔融鋼渣熱悶技術(shù)[N];世界金屬導(dǎo)報(bào);2011年
6 佟曉賓;太鋼率先用鋼渣造肥料[N];中國(guó)化工報(bào);2011年
7 記者 鄭戈 通訊員 孫學(xué)君 董斯;河北鋼鐵唐鋼與哈斯科簽約建設(shè)鋼渣處理生產(chǎn)線[N];中國(guó)冶金報(bào);2012年
8 本報(bào)記者 張曉曦;鋼渣處理早期干預(yù)技術(shù)獲推廣實(shí)施[N];中國(guó)冶金報(bào);2012年
9 張臨峰;“新一代鋼渣處理”通過(guò)鑒定[N];中國(guó)冶金報(bào);2013年
10 駱慧敏 黃偉勛;循環(huán)經(jīng)濟(jì)是鋼渣資源再利用的必由之路[N];中國(guó)改革報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 邱瑞芳;鋼渣—粉煤灰復(fù)合PRB介質(zhì)修復(fù)地表水中典型污染物的研究[D];山西大學(xué);2015年
2 彭r,
本文編號(hào):1799458
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1799458.html