天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

基于GMA的二自由度精密微定位平臺及控制系統(tǒng)研究

發(fā)布時(shí)間:2018-01-09 14:18

  本文關(guān)鍵詞:基于GMA的二自由度精密微定位平臺及控制系統(tǒng)研究 出處:《安徽理工大學(xué)》2017年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 超磁致伸縮材料 磁滯非線性 逆補(bǔ)償 微定位平臺 驅(qū)動控制系統(tǒng)


【摘要】:精密定位技術(shù)是國家制造水平的重要標(biāo)志,是國家先進(jìn)制造技術(shù)的主要支柱,同時(shí)還是精密驅(qū)動、精密測量、精密加工中的關(guān)鍵技術(shù)之一。精密定位系統(tǒng)是精密定位技術(shù)得以實(shí)現(xiàn)的載體,研究提高精密定位系統(tǒng)性能的方式,為研發(fā)高性能精密加工裝備,實(shí)現(xiàn)高檔數(shù)控機(jī)床與基礎(chǔ)制造裝備的發(fā)展目標(biāo),實(shí)施《中國制造2025》戰(zhàn)略均具有重大意義。針對壓電陶瓷驅(qū)動的精密定位平臺存有行程短、負(fù)載小、驅(qū)動電壓高等問題,論文基于超磁致伸縮材料(Giant Magnetostrictive Material,簡寫為GMM)設(shè)計(jì)出一種精密定位平臺的驅(qū)動系統(tǒng),并結(jié)合設(shè)計(jì)的柔性鉸鏈傳動機(jī)構(gòu)和開發(fā)的控制系統(tǒng),研制出一種高性能的精密定位系統(tǒng)。采用理論建模、電磁場仿真、靜、動力學(xué)有限元計(jì)算、數(shù)值分析和實(shí)驗(yàn)研究相結(jié)合的方法對所研制的精密定位系統(tǒng)進(jìn)行深入研究;赟toner-Wohlfarth模型的自由能能量極小原理,建立了 GMM單磁疇自由能的極值數(shù)學(xué)模型,得出了外加應(yīng)力和外加磁場作用下磁疇偏轉(zhuǎn)角度的變化規(guī)律,揭示了 GMM的磁致伸縮機(jī)理。提出了基于GMM的大推力驅(qū)動器的新結(jié)構(gòu)和基于柔性鉸鏈的精密傳動新機(jī)構(gòu),確定了具體的設(shè)計(jì)尺寸。建立了精密定位平臺的輸出模型,引入了一種粒子群和人工魚群混合的模型參數(shù)辨識算法。構(gòu)建了控制系統(tǒng)的軟硬件平臺,采用動態(tài)遞歸神經(jīng)網(wǎng)絡(luò)(Dynamic Recurrent Neural Network,簡寫為DRNN)前饋-模糊PID反饋控制策略。研究結(jié)果表明,采用雙線圈磁場結(jié)構(gòu)、碟簧螺釘組合的預(yù)壓應(yīng)力機(jī)構(gòu)和水管密繞水冷降溫系統(tǒng)進(jìn)行驅(qū)動器結(jié)構(gòu)設(shè)計(jì),得出了偏置磁場、預(yù)壓壓力以及工作溫度的最佳參數(shù),并得到驅(qū)動器最大位移為80μm,最大輸出力為292.3N;采用Jiles-Atherton模型描述系統(tǒng)的磁滯特性,引入粒子群和人工魚群混合優(yōu)化算法進(jìn)行磁滯模型的參數(shù)辨識,采用DRNN獲得系統(tǒng)的磁滯逆模型進(jìn)行前饋控制,采用模糊PID對系統(tǒng)輸出位移進(jìn)行反饋控制,使系統(tǒng)的定位精度達(dá)到0.75μm,定位分辨力為10nm,X、Y方向的定位行程分別為30.8μm、40.5μm,最大重復(fù)性誤差為0.6μm。論文各章內(nèi)容如下:第一章介紹了課題來源、研究背景和研究意義,分析了精密定位系統(tǒng)的研究現(xiàn)狀,得出可從提升驅(qū)動器性能、設(shè)計(jì)精密傳動機(jī)構(gòu)和提高控制系統(tǒng)可靠性三個(gè)方面提高精密定位系統(tǒng)的整體性能,并總結(jié)了這三個(gè)方面的國內(nèi)外研究現(xiàn)狀,確定了本論文的研究內(nèi)容。第二章基于Stoner-Wohlfarth模型的自由能極小原理,建立了 GMM磁疇的自由能極值模型,研究了外加應(yīng)力和外加磁場載荷作用下磁疇偏轉(zhuǎn)角度的變化規(guī)律,揭示了 GMM的磁致伸縮機(jī)理,并以此為基礎(chǔ),從GMM棒材選型、磁場結(jié)構(gòu)、預(yù)壓應(yīng)力機(jī)構(gòu)以及溫控系統(tǒng)設(shè)計(jì)等四個(gè)方面進(jìn)行優(yōu)化設(shè)計(jì),提出一種基于GMM的大推力驅(qū)動器新結(jié)構(gòu),確保了精密定位平臺的驅(qū)動器性能。第三章分別建立了超磁致伸縮驅(qū)動器(Giant Magnetostrictive Actuator,簡寫為GMA)的電磁場模型、磁滯模型和磁致伸縮模型,優(yōu)化分析了電磁場的性能;數(shù)值仿真分析了磁滯模型,得到了偏置磁場和預(yù)壓應(yīng)力對磁致伸縮應(yīng)變的影響規(guī)律;建立了GMA的機(jī)械應(yīng)力場弱解控制方程和磁致伸縮本構(gòu)方程,并采用有限元法仿真分析,得出了最佳的驅(qū)動參數(shù),為后續(xù)改善驅(qū)動器的磁滯非線性和提高控制精度提供理論依據(jù)。第四章提出了一種二自由度柔性鉸鏈平臺的新結(jié)構(gòu),并基于柔性鉸鏈設(shè)計(jì)理論,建立了輸出位移與輸入力之間的靜、動力學(xué)模型;采用數(shù)值仿真分析方法,優(yōu)化了柔性鉸鏈的幾何尺寸,得出了最優(yōu)的設(shè)計(jì)參數(shù);基于建立的動力學(xué)方程,分析了柔性鉸鏈平臺的振動特性,得到了平臺的固有頻率;最后采用ANSYS Workbench和MTALAB軟件平臺對平臺進(jìn)行靜力學(xué)和動力學(xué)仿真分析,驗(yàn)證了建立的靜、動力學(xué)模型,得出了柔性鉸鏈平臺的傳動特性。第五章提出了一種粒子群和人工魚群混合優(yōu)化的參數(shù)辨識算法,同時(shí)引入了DRNN前饋-模糊PID反饋控制策略,并基于MATLAB/SIMULINK模塊進(jìn)行仿真驗(yàn)證,仿真結(jié)果表明:提出的參數(shù)辨識算法具有較高辨識精度,引入的控制策略是有效的。第六章搭建了 GMA實(shí)驗(yàn)平臺,實(shí)驗(yàn)測試了 GMA的雙線圈磁場強(qiáng)度、輸出力以及不同偏置磁場和不同預(yù)壓應(yīng)力下的輸出位移,驗(yàn)證了磁場強(qiáng)度模型,得出了最佳驅(qū)動參數(shù);搭建了柔性鉸鏈平臺實(shí)驗(yàn)裝置,實(shí)驗(yàn)驗(yàn)證了所建立的靜、動力學(xué)模型;搭建了精密定位平臺控制系統(tǒng)的硬件結(jié)構(gòu),開發(fā)了控制系統(tǒng)的軟件平臺,實(shí)驗(yàn)驗(yàn)證了所提出控制策略的有效性;最后,測試了精密定位平臺的定位行程、重復(fù)性、定位精度、分辨力和響應(yīng)時(shí)間。第七章總結(jié)了全文的研究內(nèi)容和創(chuàng)新之處,展望了今后的研究工作。
[Abstract]:Precision positioning technology is an important symbol of the manufacturing level of a country, is the main pillar of the country's advanced manufacturing technology, and precision drive, precision measurement, one of the key technologies in precision machining. The precision positioning system is precision positioning technology to realize the carrier of high precision positioning system performance, for the development of high performance precision machining the equipment, realize the goal of development of high-end CNC machine tools and basic manufacturing equipment, implementation is of great significance Chinese manufacturing 2025> strategy. For the piezoelectric ceramic driving precision positioning platform being short stroke, small load, high voltage driver, based on giant magnetostrictive material (Giant Magnetostrictive Material, abbreviated as GMM) is designed to drive a system for precision positioning platform, combined with the control system of flexible hinge transmission mechanism and design, developed a kind of high performance The precision positioning system. By theoretical modeling, electromagnetic simulation, static and dynamic finite element method, numerical analysis and experimental study of a combination of in-depth study of the precision positioning system developed by Stoner-Wohlfarth model. Based on the principle of minimum free energy, established the extreme mathematical model of GMM single domain free energy, that should be applied with force and variation of magnetic field of magnetic domain deflection angle, the magnetostrictive mechanism of GMM was revealed. Based on the new structure of large thrust drive GMM and based on the new precision transmission mechanism with flexible hinges, to determine the specific size of the design. The output model of precision positioning platform, the introduction of a particle swarm and the artificial fish swarm hybrid model parameter identification algorithm. Construction of software and hardware platform of control system, the dynamic recurrent neural network (Dynamic Recurrent Neural Net Work, abbreviated as DRNN) feedforward and fuzzy PID feedback control strategy. The results show that the dual coil magnetic field structure, disc spring screws combined with compressive pre stress mechanism and pipe winding water cooling system for drive structure design, the bias magnetic field and pre pressure and optimum parameters of working temperature, and get the maximum displacement is 80 m, the maximum output power is 292.3N; the Jiles-Atherton model was adopted to describe the hysteresis characteristic of the system, the introduction of particle swarm optimization and hybrid artificial fish swarm optimization algorithm of hysteresis model parameter identification, the system hysteresis inverse model feed-forward control using DRNN, using fuzzy PID on system output displacement feedback control, the accuracy of positioning the system can reach to 0.75 m, the positioning resolution of 10nm, X, Y direction positioning travel were 30.8 m, 40.5 m, the maximum repeatability error is 0.6 M. the content of each chapter is as follows: The first chapter introduces the origin, research background and research significance, analyzes the research status of the precision positioning system, it can enhance the design precision from the driver performance, transmission mechanism and improve the control of the three aspects of system reliability, improve the overall performance of the precision positioning system, and summarizes the research status of these three aspects at home and abroad, the the research content of this thesis. The second chapter of the Stoner-Wohlfarth model based on the principle of minimum free energy, established the GMM domain of the free energy minimization model, studied the applied stress and electric field variation rule of load deflection angle domain, the magnetostrictive mechanism of GMM was revealed, and on this basis, from the GMM bar selection. The magnetic field structure, prestressing force and temperature control mechanism four aspects of system design and optimization design, puts forward a new thrust drive structure based on GMM, to ensure the precision The drive performance of positioning platform. The third chapter established a giant magnetostrictive actuator (Giant Magnetostrictive Actuator, abbreviated as GMA) of the electromagnetic model, hysteresis model and magnetostriction model, optimization analysis of the electromagnetic properties; numerical simulation analysis of the hysteresis model, the bias magnetic field and pre compression stress on magnetostrictive strain GMA; mechanical stress field of weak solutions of control equations and magnetostrictive constitutive equation was established, and the finite element method simulation analysis, the optimal parameters of the drive, for the subsequent improvement drive hysteresis nonlinearity and improve control accuracy and provide a theoretical basis. The fourth chapter puts forward a new structure of two degree of freedom flexible the hinge platform, and based on flexible hinge design theory, is established between the output displacement and input force of the static, dynamic model; analysis method by numerical simulation, optimization of the soft The geometric size of the hinge, the optimal design parameters; dynamic equation is established based on the analysis of the vibration characteristics of the flexible hinge platform, gets the natural frequency of the platform; finally, using ANSYS Workbench and MTALAB software platform on the platform for the analysis of statics and dynamics simulation, to verify the establishment of static, dynamic model, the characteristics of flexible transmission the hinge platform is obtained. The fifth chapter presents a hybrid artificial fish swarm optimization particle swarm optimization and parameter identification algorithm, and introduces the DRNN PID fuzzy feedforward feedback control strategy, and the MATLAB /SIMULINK module based on the simulation, the simulation results show that the parameter identification algorithm proposed has high identification accuracy, control strategy is introduced effective. In the sixth chapter, the GMA experimental platform is established, tested the strength of the magnetic field coils of GMA, the output power and different bias magnetic field and not With the pre pressure output displacement under stress, verify the magnetic field strength model, the optimal driving parameters; build a flexible hinge platform experimental device, experimental results prove that the static and dynamic model; the hardware structure to build a precise positioning control system, and design the control system software platform, was proved by the experiment effectiveness of the proposed control strategy; finally, to test the positioning precision positioning platform stroke, repeatability, accuracy, resolution and response time. The seventh chapter summarizes the research content and innovation, the prospect of future research work.

【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TH703;TP273

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王家疇;李昕欣;孫立寧;;硅基集成式微型平面納米級定位平臺控制[J];儀表技術(shù)與傳感器;2009年S1期

2 盧清華;吳志偉;范彥斌;張憲民;;一種低成本微定位平臺的設(shè)計(jì)與仿真[J];中國機(jī)械工程;2013年05期

3 王家疇;榮偉彬;李昕欣;孫立寧;;基于體硅工藝的定位平臺制作工藝分析[J];光學(xué)精密工程;2008年04期

4 仉毅;馬樹元;張磊;;納米精密磁懸浮二維定位平臺的研究[J];微計(jì)算機(jī)信息;2010年01期

5 宮金良;張彥斐;胡光學(xué);;含折疊梁型移動副的微定位平臺剛度研究[J];機(jī)械設(shè)計(jì);2012年08期

6 秦新燕;雷金;;磁懸浮定位平臺的研究綜述[J];機(jī)床與液壓;2012年21期

7 王家疇;榮偉彬;李昕欣;孫立寧;馬立;;基于體硅工藝的集成式定位平臺[J];光學(xué)精密工程;2009年02期

8 陳立國;張洋;陳濤;榮偉彬;孫立寧;;多目標(biāo)拓?fù)鋬?yōu)化設(shè)計(jì)在納米定位平臺中的應(yīng)用[J];壓電與聲光;2011年02期

9 江濤;朱大昌;;空間三平移柔順并聯(lián)超精密定位平臺設(shè)計(jì)與分析[J];煤礦機(jī)械;2011年10期

10 洪始良;張憲民;王華;;一維精密轉(zhuǎn)動定位平臺的分析與設(shè)計(jì)[J];機(jī)械設(shè)計(jì)與研究;2008年02期

相關(guān)會議論文 前1條

1 陳美勇;周昌翰;郭智瑋;;適應(yīng)順滑模型控制器于高精度定位平臺之應(yīng)用[A];第二十七屆中國控制會議論文集[C];2008年

相關(guān)重要報(bào)紙文章 前3條

1 通訊員 楊立洋 李曉林;新疆移動建成手機(jī)報(bào)警定位平臺[N];新疆日報(bào)(漢);2009年

2 記者 孫振剛 楊立洋;110報(bào)警迅速鎖定案發(fā)位置[N];人民郵電;2009年

3 記者 吳亞東;手機(jī)報(bào)警能準(zhǔn)確定位[N];法制日報(bào);2009年

相關(guān)博士學(xué)位論文 前6條

1 謝虎;夾層結(jié)構(gòu)磁懸浮納米定位平臺結(jié)構(gòu)設(shè)計(jì)與控制方法研究[D];北京理工大學(xué);2015年

2 喻曹豐;基于GMA的二自由度精密微定位平臺及控制系統(tǒng)研究[D];安徽理工大學(xué);2017年

3 周振雄;多自由度精密磁懸浮定位平臺的設(shè)計(jì)與研究[D];長春理工大學(xué);2012年

4 李志鑫;超精密氣浮定位平臺動力學(xué)特性優(yōu)化研究[D];華中科技大學(xué);2008年

5 權(quán)建洲;高速工況下H型桁架定位平臺的建模與同步控制[D];華中科技大學(xué);2010年

6 張桂林;壓電定位平臺的建模與控制方法研究[D];山東大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 張小龍;面向IC封裝的氣浮定位平臺的研究[D];西安工業(yè)大學(xué);2015年

2 朱軍輝;全壓電驅(qū)動的二維大行程納米定位平臺研究[D];蘇州大學(xué);2015年

3 徐晗;平面3-RRR并聯(lián)定位平臺及控制系統(tǒng)設(shè)計(jì)[D];中國礦業(yè)大學(xué);2015年

4 田奇;印刷電路板光學(xué)檢測定位平臺系統(tǒng)的設(shè)計(jì)及應(yīng)用[D];北京工業(yè)大學(xué);2015年

5 才立忠;柔性多維精密定位平臺的設(shè)計(jì)及誤差分析[D];重慶大學(xué);2015年

6 郭明陸;壓電陶瓷驅(qū)動的微納定位平臺系統(tǒng)研究[D];東北大學(xué);2014年

7 吳春婷;壓電陶瓷微定位平臺的遲滯補(bǔ)償控制方法研究[D];吉林大學(xué);2016年

8 曾穎;119手機(jī)報(bào)警定位平臺的設(shè)計(jì)與實(shí)現(xiàn)[D];福州大學(xué);2013年

9 潘鵬;基于粘滑驅(qū)動原理的跨尺度納米級定位平臺研究[D];蘇州大學(xué);2016年

10 孫玉瓊;面向壓電驅(qū)動納米定位平臺的自抗擾運(yùn)動控制[D];山東大學(xué);2016年

,

本文編號:1401737

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1401737.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶90fa8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com