一維新型電極材料的設(shè)計及其電化學(xué)性能研究
發(fā)布時間:2018-01-09 11:33
本文關(guān)鍵詞:一維新型電極材料的設(shè)計及其電化學(xué)性能研究 出處:《中國科學(xué)技術(shù)大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 一維電極材料 碳納米纖維 微納米管 鎳鉬金屬 電化學(xué)能源存儲 電催化劑
【摘要】:隨著化石燃料的不斷消耗和環(huán)境污染的日益加重,開發(fā)清潔能源已經(jīng)成為二十一世紀(jì)最重要的問題之一。發(fā)展廉價、環(huán)保、高效的能源存儲與轉(zhuǎn)換材料是解決這一問題的重要途徑。納米科技的迅速發(fā)展給能源領(lǐng)域帶來了新的機(jī)遇與挑戰(zhàn),科學(xué)家們已經(jīng)在新型納米電極材料的制備和應(yīng)用研究方面取得了重要進(jìn)展。盡管如此,如何合理的設(shè)計電極材料,以及如何實現(xiàn)電極材料結(jié)構(gòu)與性能的優(yōu)化,仍是目前亟待解決的關(guān)鍵問題。一維納米結(jié)構(gòu)電極材料具有較高的比表面積、短的電子傳輸路徑、易于形成三維網(wǎng)絡(luò)等優(yōu)勢,在電化學(xué)能源存儲與轉(zhuǎn)換領(lǐng)域有著十分廣泛的應(yīng)用。本論文將著重探討幾種一維電極材料的設(shè)計、制備及其在電化學(xué)能源儲存與轉(zhuǎn)換領(lǐng)域中的應(yīng)用。首先以本實驗室發(fā)展的一種高度均勻的碳質(zhì)納米纖維作為前驅(qū)體,通過合理的雜原子摻雜制備出性能優(yōu)異的超級電容器電極材料。而后利用化學(xué)刻蝕和退火處理等方法制備出一系列中空納米管狀能源存儲電極材料。此外,以廉價的鉬酸鎳(NiMoO_4)納米棒做為前驅(qū)體,結(jié)合碳包覆和三維基底原位生長技術(shù),分別制備了多孔碳負(fù)載鎳鉬金屬顆粒和鎳鉬氧化物納米棒陣列兩種催化劑。該電極材料作為雙功能的電化學(xué)產(chǎn)氫和產(chǎn)氧催化劑,有望應(yīng)用于電化學(xué)全水分解制氫反應(yīng)。所取得的主要研究成果如下:1、通過合理的雜原子摻雜,制備出具有三維網(wǎng)絡(luò)結(jié)構(gòu)的硼氧共摻雜碳納米纖維(BO-CNF)薄膜材料,實現(xiàn)了超級電容器性能的提升。在本實驗室發(fā)展的碳納米纖維基礎(chǔ)上,我們利用簡單的前驅(qū)體混合和高溫碳化過程,成功制備出自支撐的BO-CNF薄膜。我們通過調(diào)節(jié)雜原子的摻雜含量和薄膜材料的振實密度,獲得了具有高的質(zhì)量比電容(192.8 Fg-1)和體積比電容(179.3 Fcm3)的電極材料,并詳細(xì)闡述了材料微觀結(jié)構(gòu)與電化學(xué)性能之間的關(guān)系。該薄膜材料由于具有連續(xù)的電解質(zhì)離子擴(kuò)散通道以及良好的電導(dǎo)率,因而具有非常高的倍率容量。同時,這種薄膜材料可作為一種良好的載體平臺來沉積比容量更高的聚苯胺納米顆粒,實現(xiàn)性能的進(jìn)一步提升。我們還展示了所用硼源摻雜劑的循環(huán)再利用過程,達(dá)到了降低生產(chǎn)成本的目的。2、發(fā)展了兩種制備金屬氧化物、氫氧化物空心微納米管的方法。以碳納米纖維為模板,通過原位包覆和低溫化學(xué)刻蝕,我們成功制備出具有較高比表面積(221.8m2g-1)的氫氧化鎳(Ni(OH)_2)空心納米管結(jié)構(gòu),并詳細(xì)討論了刻蝕條件對材料結(jié)構(gòu)的影響。該方法具有很好的普適性,可用于制備其它鈷基和錳基金屬氧化物空心納米管;另外通過層層生長法,即在一種鉬基金屬-有機(jī)框架(MOF)纖維的表面原位生長另一種鈷基MOF,構(gòu)筑出包覆層厚度不同的MOF核殼結(jié)構(gòu)。然后利用熱處理和堿刻蝕過程,制備出具有多級結(jié)構(gòu)的混合金屬氧化物(CoMoO_4)亞微米管。利用上述幾種過渡金屬空心管材料高比表面積和大孔隙率的優(yōu)勢,探討了其在超級電容器、鋰離子電池電極材料上應(yīng)用的可能性。3、成功制備出一維多孔碳負(fù)載過渡金屬的全水分解催化劑材料。以廉價的NiMoO_4納米棒作為前驅(qū)體,通過常溫碳包覆并結(jié)合高溫碳化處理,制備了一種多孔碳負(fù)載鎳和碳化鉬納米顆粒(Ni/Mo_2C-PC)的復(fù)合催化劑。該復(fù)合材料作為一種雙功能電催化劑,展現(xiàn)出良好的氫析出(HER)和氧析出(OER)催化活性。通過材料組分與性能關(guān)系的詳細(xì)研究,我們發(fā)現(xiàn)該復(fù)合材料高的催化活性來源于Ni與Mo_2C之間的電子遷移。這種電子轉(zhuǎn)移導(dǎo)致了更高價態(tài)的鎳和更低價態(tài)的鉬,從而形成更多的HER和OER的活性位點。全水分解產(chǎn)氫電解槽具有良好的活性和穩(wěn)定性,有望應(yīng)用于電解水制氫反應(yīng)。4、發(fā)展了一維金屬氧化物納米棒陣列材料的尿素電解產(chǎn)氫性能。以生長在泡沫鎳上的NiMoO_4納米棒陣列為前驅(qū)體,通過在不同氣氛下的退火處理,分別得到了用于尿素電解制氫反應(yīng)的陽極和陰極催化劑。該陽極催化劑包含高價態(tài)的鎳離子和鉬離子,能夠有效地催化尿素氧化反應(yīng)(UOR),用于取代通常電解水中的陽極OER過程,可大大降低反應(yīng)的電壓值。其陰極催化劑由于具有鎳鉬復(fù)合價態(tài)的HER多重活性位點,表現(xiàn)出可與最好的鉑碳催化劑相媲美的催化活性。因而組裝成的尿素電解槽僅需極低的槽電壓就能獲得高的電流密度,實現(xiàn)了基于非貴金屬催化劑材料電解槽的性能最優(yōu)化。這些三維塊材催化劑材料避免了粘結(jié)劑的加入和催化劑的涂覆,具有極高的活性和穩(wěn)定性,展現(xiàn)出良好的應(yīng)用前景。
[Abstract]:With the continuous consumption of fossil fuel and environmental pollution is increasing, the development of clean energy has become one of the most important problems. In twenty-first Century the development of low-cost, environmentally friendly, energy storage and conversion efficiency of the materials is an important way to solve this problem. The rapid development of nanotechnology has brought new opportunities and challenges to the field of energy, scientists important progress has been made in the new nano electrode materials preparation and application research. However, how to design the electrode material reasonably, and how to realize the optimization of material structure and properties of the electrode, is a key problem to be solved. One dimensional nanostructured electrode materials with high specific surface area, the electronic transmission path is short that is easy to form a three-dimensional network and other advantages, has been widely used in electrochemical energy storage and conversion field. This paper will focus on The design of several one dimensional electrode material, preparation and its application in electrochemical energy storage and conversion in the field. First developed by our laboratory and a highly uniform carbon nanofibers as the precursor, through reasonable heteroatom doping in preparing excellent electrode materials of supercapacitor. Then using chemical etching and annealing treatment the methods for the preparation of a series of hollow nano tubular energy storage materials. In addition, the inexpensive nickel molybdate (NiMoO_4) nanorods as precursor, carbon coating and substrate with three-dimensional in-situ growth technique, were prepared porous carbon supported nickel molybdenum metal particles and nickel molybdenum oxide nanorod arrays of two kinds of catalysts. The electrode materials as electrode hydrogen and oxygen producing double function catalyst, is expected to be applied to the electrochemical hydrogen reaction. The main results are as follows: 1, through the reasonable Heteroatom doping, preparation of boron oxygen with three dimensional network structure of Co doped carbon nanofibers (BO-CNF) thin film materials, realizes the super capacitor performance improvement. In the laboratory the development of carbon nanofibers on the basis, we use the mixed precursor and high temperature carbon process simple, prepared by BO-CNF the film we support. By adjusting the heteroatom doping concentration and film material tap density, obtained with high quality capacitance (192.8 Fg-1) and the volume ratio of the capacitor (179.3 Fcm3) of the electrode material, and expounds the relationship between the microstructure and the electrochemical properties of the material. The film material with electrolyte the continuous ion diffusion channels and good conductivity, so it has very high rate capacity. At the same time, the polystyrene film material can be used as a good platform to deposit higher than capacity Amine nanoparticles, to further enhance the system performance. We also show the source of boron dopant recycling process, to reduce the cost of production of.2, developed two kinds of preparation methods of metal oxide, hydroxide hollow nanotubes. Using nano carbon fiber as the template, through in situ coating and low temperature chemical the etching, we successfully prepared with high specific surface area (221.8m2g-1) of nickel hydroxide (Ni (OH) _2) hollow nanotubes, and the effects of etching conditions on the structure of the material is discussed. This method has good universality, can be used for the preparation of other cobalt and manganese based metal oxide hollow nanotubes in addition; layer by layer growth method, namely in a molybdenum based metal organic frameworks (MOF) another cobalt based MOF surface in situ fiber, construct MOF core-shell structure of the coating layer of different thickness. Then by means of heat treatment and alkali The etching process, preparation of mixed metal oxides with hierarchical structure (CoMoO_4) sub micron tube. By using the above several transition metal hollow tube material with high specific surface area and high porosity advantage, it discusses the super capacitor electrode material of lithium ion battery application can.3, successfully prepared porous carbon supported transition metal water decomposition catalyst materials. Using cheap NiMoO_4 nanorods as precursor, carbon coated with high temperature and normal temperature through carbonization, prepare a porous carbon supported nickel and molybdenum carbide nanoparticles (Ni/ Mo_2C-PC) of the composite catalyst. The composite material as a bifunctional electrocatalyst, show a good hydrogen evolution (HER) and oxygen precipitation (OER) catalytic activity. Through the detailed study of material composition and property, we found that the composites with high catalytic activity between Ni and Mo_2C from Electron transfer electron transfer. This leads to more and more high valence nickel low valence molybdenum, the active site to form more HER and OER. The hydrogen from electrolysis cell has good activity and stability, can be used in the water electrolysis reaction of.4, the development of the urea electrolytic hydrogen production properties of one-dimensional metal oxides nanorod array materials. Using NiMoO_4 nanorod arrays grown on nickel foam as precursor by annealing under different atmosphere, were obtained for the anode and cathode catalyst for hydrogen production. The urea electrolytic nickel ion and molybdenum ion of the anode catalyst contains high valence, can effectively catalyze the oxidation reaction of urea (UOR), anode for OER process instead of electrolytic water, can greatly reduce the reaction voltage. The cathode catalyst due to HER multiple active sites with nickel molybdenum composite valence, exhibit The catalytic activity can be comparable with the platinum carbon catalyst. The best electrolytic cell assembled and urea only very low cell voltage can obtain high current density, the performance optimization of non noble metal catalyst material in electrolytic bath. Based on these 3D bulk catalyst materials to avoid coating binder and adding catalyst, has high activity and stability, show a good application prospect.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O643.36;O646
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 賴小勇;王呈睿;金泉;于然波;王丹;;鈦酸鍶花狀分級納米結(jié)構(gòu)的合成與光催化性質(zhì)研究(英文)[J];Science China Materials;2015年03期
,本文編號:1401247
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1401247.html
最近更新
教材專著