高精度多自由度航天器模擬器關鍵技術及實驗研究
本文關鍵詞:高精度多自由度航天器模擬器關鍵技術及實驗研究 出處:《哈爾濱工業(yè)大學》2017年博士論文 論文類型:學位論文
更多相關文章: 多自由度模擬器 自動配平 參數(shù)辨識 軌跡控制 逼近軌跡
【摘要】:多自由度航天器模擬器被廣泛應用于在地面研究航天器的動力學、制導、導航與控制。采用氣懸浮技術,模擬器可實現(xiàn)在地面的無摩擦微重力的自由運動。利用多自由度模擬器可在地面進行相關空間任務實驗,驗證各類算法,可有效降低在軌飛行器任務的風險,同時模擬器本身具有成本低、可重復性高等優(yōu)點。國內外很多研究機構已開始研究各類模擬器,并用于編隊飛行、交會對接等方面的研究。模擬器關鍵技術的研究是地面仿真效果和精度的保證。針對模擬器的關鍵技術和仿真實驗中的關鍵算法,論文主要開展了如下研究工作:針對模擬器需要實現(xiàn)的仿真功能,論文首先給出了模擬器的總體方案設計,基于平面氣浮軸承和球面氣浮軸承實現(xiàn)二維平動和三軸轉動,對模擬器的各分系統(tǒng)進行了簡要的概述。針對模擬器的質心調平問題,設計自動的質心配平系統(tǒng),實現(xiàn)對模擬器質心在空間三個方向的獨立調節(jié),并分析了配平質量塊調整量與模擬器質心變化量之間的關系。進一步針對質心和慣量的獨立調節(jié)問題,設計了一種質心慣量獨立調節(jié)系統(tǒng)并提出了調節(jié)方法。最后建立了包括配平系統(tǒng)的模擬器姿態(tài)動力學模型,同時給出配平質量塊移動量與模擬器慣量之間的關系。針對模擬器慣性參數(shù)設計需求——模擬器的慣性參數(shù)與實際航天器的慣性參數(shù)一致或者是航天器的縮比,提出對模擬器上設備安裝方位優(yōu)化的方法。將空間約束問題簡化為二維平面上的幾何約束,給出幾何約束的不等式表示方式。針對質心的配平問題,提出了一種快速的自動配平方法。通過姿態(tài)穩(wěn)定控制的輸出力矩估計質心的偏差量,配平系統(tǒng)實現(xiàn)質心快速調節(jié)。針對模擬器的參數(shù)辨識問題,將飛輪的輸出力矩作為模擬器參數(shù)辨識的激勵力矩,提出了跟蹤微分器(TD)濾波器結合最小二乘法(RLS)的系統(tǒng)辨識方法,TD和離散最小二乘法都不需要噪聲信息。兩種結合方式TD-TD-RLS和ETD(Extended TD)-RLS都有較強的噪聲抑制效果。若無較大干擾力矩,ETD-RLS有更快的收斂速度;TD-TD-RLS方法對非零均值的干擾力矩有更好的收斂精度。之后采用EKF方法實現(xiàn)狀態(tài)量和未知慣性參數(shù)的同時估計,并分析了方法的可觀性。針對辨識的效率和模擬器轉動范圍限制問題,提出了一種次優(yōu)激勵的求取方法。根據(jù)慣性參數(shù)的粗略值,以積分形式的條件數(shù)作為性能指標,采用高斯偽譜法對優(yōu)化問題離散化,進而優(yōu)化得到激勵軌跡。針對航天器對接地面模擬的逼近軌跡問題,考慮目標航天器的自旋和太陽帆板的阻礙,設計繞飛逼近軌跡和最優(yōu)能量逼近軌跡。繞飛逼近軌跡更適用于自旋速度較小,與目標距離較近的情況。繞飛逼近軌跡到達目標位置后可與目標航天器模擬器保持相對穩(wěn)定,便于對接過程實現(xiàn)。最優(yōu)的逼近軌跡是最終時間tf的函數(shù),且以最優(yōu)能量逼近目標位置。然后給出了最優(yōu)軌跡的正面對接范圍和兩段最優(yōu)軌跡的避障策略。之后,針對交會對接過程的有下滑力干擾的控制問題,設計了模擬器交會過程的逼近軌跡,采用自抗擾控制實現(xiàn)對模擬器交會對接過程的高精度控制。給出了冷噴氣的推力分配策略,并通過PWM方式實現(xiàn)對推力大小的等效控制。
[Abstract]:Dynamic, multi DOF spacecraft simulator is widely used in spacecraft on the ground of guidance, navigation and control. Using gas suspension technology, can realize the ground simulator without friction free movement. Microgravity can be related to space missions in the ground experiment utilizing the multi degree of freedom simulator, verify the various algorithms, can effectively reduce the risk in orbit the aircraft task, at the same time the simulator itself has the advantages of low cost, the advantages of higher repeatability. Many domestic and foreign research institutions have begun to study all kinds of simulators, and for formation flight, rendezvous and docking and other aspects of the research. The key technology of the simulator is ground simulation effect and accuracy. Aiming at the key algorithm of key technology and simulation simulator the paper carried out the research work as follows: according to the need to achieve the simulation function of simulator, this paper first presents the simulator The scheme of plane air bearing and spherical air bearing to achieve two-dimensional translation and three rotation based on a brief overview of the system simulator. According to the centroid Leveling Problem simulator, design the centroid trim system automatically, realize the adjustment of the simulator centroid of three directions in space independently, and analysis the relationship between the quantity and quality balance adjustment. Further simulator centroid variation in centroid and inertia of the independent regulation problem, design a mass inertia independent regulation system and puts forward the regulation method. Finally established including simulator attitude dynamics model of trim system, at the same time, given the relationship between quantity and quality balance block movement simulator in view of the inertia. Inertia parameters of inertial parameters of simulator inertial parameters consistent with the actual needs of the simulator of spacecraft or spacecraft The shrinkage ratio, propose the method of the optimum equipment installation simulator. The space constraint problem is simplified to 2D geometric constraint, inequality of geometric constraint representation. According to the centroid of balancing problem, put forward a fast automatic balancing method. The output torque of attitude stabilization control estimation deviation of centroid the trim system realization of centroid rapid adjustment. For the parameter identification problem of the simulator, the output torque of the flywheel simulator as the parameter identification of excitation torque, the tracking differentiator (TD) filter with minimum two multiplication (RLS) system identification methods, TD and discrete least squares method without noise information. The two kinds of combination TD-TD-RLS and ETD (Extended TD -RLS) has strong noise suppression effect. If there is no large disturbance moment, ETD-RLS has faster convergence speed; TD-TD-RLS method of non zero mean The disturbance torque values has a better convergence accuracy estimation. After using the EKF method to achieve state and unknown inertial parameters at the same time, and analyzed the observability method. According to the identification efficiency and the simulator rotation range limitation, method of obtaining a suboptimal incentive is proposed. According to the inertial parameters of the rough value. In the integral form of the condition number as the performance index, using Gauss pseudospectral method to the optimization problem of discrete optimization and incentive for trajectory. The trajectory of the spacecraft docking simulation approaching ground, considering the target spacecraft spin and solar array block design flying trajectory and optimal approximation energy approximation trajectory. Flying trajectory more approaching for the spin speed is small, and the distance is closer. Fly around the approaching track to the target position can keep relatively stable and the target spacecraft simulator for docking Process to achieve optimal trajectory approximation. Finally TF is a function of time, and the optimal energy approximation of target location. And then the obstacle avoidance strategy of optimal trajectory front butt range and the two optimal trajectory. Then, aiming at the rendezvous and docking process control the problem of declining the interference force, the design process of rendezvous trajectory approximation simulator, the ADRC can realize high precision control of the simulator of docking procedure is given. The thrust allocation strategy of the cold jet, and to achieve equivalent thrust control by way of PWM.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:V416.8
【參考文獻】
相關期刊論文 前5條
1 方勇純;申輝;孫秀云;張旭;鮮斌;;無人直升機航向自抗擾控制[J];控制理論與應用;2014年02期
2 許劍;楊慶俊;包鋼;李軍;;五自由度氣浮臺平動時側向干擾力問題的研究[J];宇航學報;2009年05期
3 周黎妮;唐國金;李海陽;;航天器姿態(tài)機動的自抗擾控制器設計[J];系統(tǒng)工程與電子技術;2007年12期
4 李延斌,包鋼,王祖溫,呂彥東;三自由度氣浮臺自動平衡系統(tǒng)動力學建模[J];中國慣性技術學報;2005年05期
5 宋金來,甘作新,韓京清;自抗擾控制技術濾波特性的研究[J];控制與決策;2003年01期
相關博士學位論文 前6條
1 韋文書;質量體附著航天器模型參數(shù)辨識及姿態(tài)跟蹤耦合控制研究[D];哈爾濱工業(yè)大學;2013年
2 孫勇;基于改進Gauss偽譜法的高超聲速飛行器軌跡優(yōu)化與制導[D];哈爾濱工業(yè)大學;2012年
3 張大偉;航天器自主交會對接制導與控制方法研究[D];哈爾濱工業(yè)大學;2010年
4 龍威;平面空氣靜壓軸承承載特性研究[D];哈爾濱工業(yè)大學;2010年
5 許劍;五自由度氣浮仿真試驗臺樣機的研制及其關鍵技術的研究[D];哈爾濱工業(yè)大學;2010年
6 任迪;三軸氣浮臺氣體球軸承靜態(tài)特性及渦流力矩的研究[D];哈爾濱工業(yè)大學;2010年
,本文編號:1367613
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1367613.html