轉(zhuǎn)爐低成本煉鋼相關(guān)技術(shù)研究及模型開發(fā)
本文關(guān)鍵詞:轉(zhuǎn)爐低成本煉鋼相關(guān)技術(shù)研究及模型開發(fā) 出處:《北京科技大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 轉(zhuǎn)爐煉鋼 轉(zhuǎn)爐鋼渣 鋼渣T.Fe 脫磷 成本控制
【摘要】:論文針對(duì)企業(yè)100t轉(zhuǎn)爐渣料消耗高、渣中(T.Fe)含量高等問題,通過轉(zhuǎn)爐終渣返回利用技術(shù)、降低轉(zhuǎn)爐終渣(T.Fe)技術(shù)、轉(zhuǎn)爐適宜渣料技術(shù)研究及其煉鋼成本控制模型的開發(fā),對(duì)不同鋼種磷含量要求,提出終渣多次利用及降低全鐵含量的措施,建立適宜渣料量適時(shí)加入模型及成本控制模型,為企業(yè)降低轉(zhuǎn)爐煉鋼成本提供理論依據(jù)和實(shí)踐指導(dǎo)。研究發(fā)現(xiàn)爐渣(P2O5)含量控制在3%以內(nèi),組分活度變化對(duì)鋼液成分的影響不大,對(duì)脫磷影響較小。對(duì)實(shí)際生產(chǎn)爐次數(shù)據(jù)進(jìn)行模擬計(jì)算,明確了終渣連續(xù)返回利用的極限條件。對(duì)于100 t轉(zhuǎn)爐,留渣3 t以下,CaO/SiO2大于2.5、(P2O5)含量不超過3%的終渣可返回利用,能冶煉出鋼磷含量≤0.020%鋼種。終渣堿度提高到3.5以上、終點(diǎn)鋼液溶解氧提高到0.05%以上、終渣(FeO)含量需提高到20%以上,有利于高(P2O5)含量的爐渣返回利用。明確了終渣中粒鐵含量高的原因,提出控制爐渣(Si02)含量、提高出鋼溫度等措施降低渣中的粒鐵含量,轉(zhuǎn)爐終渣的粒鐵含量由平均8.1%降至0.5%,噸鋼成本降低18.24元。揭示了轉(zhuǎn)爐渣(T.Fe)含量與底吹強(qiáng)度、含鐵冷料的加入量和加入時(shí)機(jī)、脫碳速度和終點(diǎn)碳含量的關(guān)系,提出(T.Fe)含量控制措施,實(shí)現(xiàn)終點(diǎn)[C]含量在0.06%以上,可將轉(zhuǎn)爐終渣(T.Fe)含量穩(wěn)定控制在15%以下;出鋼碳含量控制在0.1%以上,可將爐渣(T.Fe)含量控制在12.5%以下;對(duì)于出鋼磷含量≥0.025%的鋼種,終渣(T.Fe)最低降至14%以下,噸鋼成本減少3.5元。通過理論計(jì)算,分析渣料成分、轉(zhuǎn)爐冶煉過程渣料消耗對(duì)脫磷的影響,開發(fā)了包括合理渣料消耗量的確定、渣料加入時(shí)機(jī)調(diào)整等的轉(zhuǎn)爐適宜渣料控制技術(shù),通過固體鋼渣的使用、不同渣料的合理配比并采取促進(jìn)鋼渣平衡的措施,在同等情況下,實(shí)現(xiàn)新渣料加入量降低至40 kg/t以下,降低成本6.29元/t,出鋼磷含量均滿足所冶煉鋼種的要求。通過建立適宜渣料適時(shí)加入控制,實(shí)現(xiàn)了吹煉過程即時(shí)優(yōu)化渣料結(jié)構(gòu),降低渣料消耗,對(duì)100t轉(zhuǎn)爐冶煉出鋼磷含量≤0.015%鋼種,造渣料消耗由81.85 kg/t降低至69.99 kg/t。建立了轉(zhuǎn)爐冶煉過程鋼液及爐渣成分預(yù)報(bào)模型,結(jié)合熔池溫度計(jì)算,開發(fā)了實(shí)時(shí)鋼液磷含量預(yù)報(bào)模型。出鋼碳含量大于0.08%條件下,模型計(jì)算冶煉過程碳含量與實(shí)際相差0.014%,出鋼碳含量±0.02%以內(nèi),模型預(yù)測的磷含量與實(shí)際相差30 ppm。基于轉(zhuǎn)爐終渣返回技術(shù)、轉(zhuǎn)爐適宜渣料控制技術(shù)及降低轉(zhuǎn)爐終渣鐵含量關(guān)鍵技術(shù),開發(fā)了轉(zhuǎn)爐煉鋼低成本控制模型,實(shí)時(shí)對(duì)轉(zhuǎn)爐煉鋼渣料加入進(jìn)行控制,模型預(yù)測噸鋼成本和實(shí)際成本的最大實(shí)際偏差在20元左右,相對(duì)偏差小于0.6%,對(duì)轉(zhuǎn)爐煉鋼控制成本將起到很好的指導(dǎo)作用。
[Abstract]:The enterprise of 100t converter slag and high consumption of slag (T.Fe) content of higher returns, using technology to reduce the slag through the slag (T.Fe) technology, converter slag material technology and its research development for steelmaking cost control model, requirements of different steel grade phosphorus content, put forward the final slag and reduce repeated use the iron content of the measures, establishing the suitable slag amount added to control model and the model for the enterprise to reduce the cost, to provide the theoretical basis and practical guidance for converter steelmaking cost. It is found that the content of slag (P2O5) is less than 3%, and the change of component activity has little effect on the composition of molten steel and has little effect on dephosphorization. The simulation calculation of the secondary data of the actual production furnace has been carried out, and the limit conditions for the continuous return utilization of the final slag have been clarified. For the 100 t converter, slag below 3 T, CaO/SiO2 (P2O5) is greater than 2.5, the final slag content of not more than 3% can be recycled, can tap the phosphorus content of less than 0.020% steel smelting. The final slag alkalinity is increased to more than 3.5, the dissolved oxygen in the final molten steel is increased to more than 0.05%, and the final slag (FeO) content needs to increase to more than 20%, which is beneficial to the recovery and utilization of the slag with high (P2O5) content. The reason of high content of iron in final slag is clarified. Measures such as controlling slag content (Si02) and increasing tapping temperature are put forward to reduce the content of granular iron in slag. The content of iron in final slag of converter is reduced from 8.1% to 0.5%, and the cost of ton steel is reduced by 18.24 yuan. Reveal the slag (T.Fe) content and bottom blowing intensity, iron cold material adding amount and the relationship between the time and the decarburization rate and end point carbon content (T.Fe) content, put forward control measures, realize the end point [C] content is above 0.06%, the end slag (T.Fe) content and stability control below 15% control; tapping carbon content above 0.1%, the slag (T.Fe) content of 12.5% in the control; 0.025% for steel tapping phosphorus content is higher than the final slag (T.Fe), the lowest is below 14%, the cost per ton of 3.5 yuan less. Through theoretical calculation, analysis of slag composition, smelting slag dephosphorization effect on consumption, including the development of the slag slag, determine the reasonable time to adjust the mixture into the appropriate slag consumption control technology, through the use of reasonable ratio, solid slag slag and take different measures to promote the balance of steel slag and in the same circumstances, to achieve a new slag adding amount is reduced to 40 kg/t, reduce the cost of 6.29 yuan /t, tapping p all meet the requirements of steel smelting. Through the establishment of suitable slag added to control, realizes the real-time optimization of slag blowing process structure, reduce the consumption of slag, the phosphorus content of 100t BOF tapping of steel slag is less than or equal to 0.015%, fuel consumption decreased from 81.85 kg/t to 69.99 kg/t. The prediction model of molten steel and slag composition in converter smelting process is set up, and the prediction model of real time steel liquid phosphorus content is developed in combination with the calculation of molten pool temperature. When the carbon content of tapping is greater than 0.08%, the carbon content of the smelting process is 0.014% different from that of the actual process, and the carbon content of tapping is less than 0.02%. The phosphorus content predicted by the model is 30 ppm. The final slag and converter slag return technology suitable control technology and reduce the slag iron content of key technology based on the development of the converter steelmaking cost control model of converter steelmaking slag adding real-time control model to predict the maximum actual deviation cost per ton and the actual cost of 20 yuan, the relative deviation is less than 0.6%. Play a very good role in guiding the cost control of converter steelmaking.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TF713
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱英雄;鐘良才;;轉(zhuǎn)爐煉鋼用石灰和石灰石熔化成渣機(jī)理及應(yīng)用[J];煉鋼;2017年01期
2 許旭東;黃亞鶴;;100t頂?shù)讖?fù)吹轉(zhuǎn)爐低成本生產(chǎn)工藝實(shí)踐[J];南鋼科技與管理;2016年03期
3 林騰昌;汪成義;王杰;戴永剛;白李國;王成杰;;頂槍供氧強(qiáng)度對(duì)復(fù)吹轉(zhuǎn)爐冶煉效果的影響[J];工業(yè)加熱;2016年04期
4 趙長亮;孫彥輝;袁天祥;閆占輝;羅磊;;轉(zhuǎn)爐預(yù)脫磷與“全三脫”鐵水少渣冶煉技術(shù)[J];鋼鐵;2016年05期
5 林瑛;李勇;吳偉;朱啟柱;魏志強(qiáng);;轉(zhuǎn)爐底吹氣體對(duì)螺紋鋼性能的影響[J];中國冶金;2016年01期
6 趙志超;孫彥輝;羅磊;趙長亮;;300t頂?shù)讖?fù)吹轉(zhuǎn)爐爐渣FeO動(dòng)態(tài)預(yù)測模型[J];煉鋼;2015年06期
7 王杰;曾加慶;楊利彬;;復(fù)吹轉(zhuǎn)爐雙渣法脫磷冶煉工藝一次倒?fàn)t溫度最優(yōu)化選擇[J];煉鋼;2015年04期
8 杜玉濤;董大西;朱榮;楊韋華;楊鋒功;;轉(zhuǎn)爐石灰石雙渣低成本工藝研究與實(shí)踐[J];工業(yè)加熱;2014年06期
9 吳啟帆;包燕平;林路;徐國平;程慧高;黃毅;辛彩萍;;轉(zhuǎn)爐鋼渣的物相及其冷卻析出研究[J];武漢科技大學(xué)學(xué)報(bào);2014年06期
10 曾加慶;潘貽芳;王立平;梁玫;李樹慶;;對(duì)復(fù)吹轉(zhuǎn)爐低成本、高效化生產(chǎn)潔凈鋼水理論與實(shí)踐的再認(rèn)識(shí)[J];鋼鐵;2014年10期
相關(guān)博士學(xué)位論文 前2條
1 時(shí)彥林;316L奧氏體不銹鋼VOD冶煉過程中氮行為的研究[D];北京科技大學(xué);2015年
2 刁江;中高磷鐵水轉(zhuǎn)爐雙聯(lián)脫磷的應(yīng)用基礎(chǔ)研究[D];重慶大學(xué);2010年
相關(guān)碩士學(xué)位論文 前3條
1 劉鵬飛;低磷鋼生產(chǎn)的磷控制技術(shù)研究[D];東北大學(xué);2011年
2 郭戌;轉(zhuǎn)爐雙聯(lián)法脫磷爐石灰溶解行為研究[D];重慶大學(xué);2011年
3 孫丹;轉(zhuǎn)爐多功能精煉法脫磷期終點(diǎn)磷含量預(yù)報(bào)模型的研究[D];東北大學(xué);2008年
,本文編號(hào):1342795
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1342795.html