新農(nóng)藥氟吡菌酰胺在環(huán)境中的轉(zhuǎn)化機理及其轉(zhuǎn)化產(chǎn)物的生物毒性研究
本文關(guān)鍵詞:新農(nóng)藥氟吡菌酰胺在環(huán)境中的轉(zhuǎn)化機理及其轉(zhuǎn)化產(chǎn)物的生物毒性研究 出處:《北京科技大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 氟吡菌酰胺 轉(zhuǎn)化產(chǎn)物 轉(zhuǎn)化機理 生物毒性
【摘要】:農(nóng)藥施于環(huán)境后,在生物和非生物作用下會生成多種轉(zhuǎn)化產(chǎn)物,使得生物體可能暴露于農(nóng)藥及其轉(zhuǎn)化產(chǎn)物的混合體系中。研究表明,農(nóng)藥轉(zhuǎn)化產(chǎn)物可能含有母體農(nóng)藥的毒核、是農(nóng)藥的活性成分、生物富集因子增加和作用模式多樣化,在一定程度上影響甚至決定母體農(nóng)藥對環(huán)境及非靶標(biāo)生物的安全性,因而近些年來受到了越來越廣泛的關(guān)注,并被歸入"新興污染物"范疇。然而,對于很多農(nóng)藥,尤其是新型農(nóng)藥,它們在環(huán)境中的轉(zhuǎn)化機理及其轉(zhuǎn)化產(chǎn)物的相關(guān)信息依然十分匱乏。氟吡菌酰胺是拜耳作物科學(xué)公司研發(fā)的一種新型吡啶乙基苯甲酰胺類殺菌劑,殺菌譜廣,防治效果好,已在我國獲得登記并且大規(guī)模推廣使用,也在世界其他國家和地區(qū)得到廣泛的應(yīng)用,但是目前關(guān)于其環(huán)境轉(zhuǎn)化和轉(zhuǎn)化產(chǎn)物等方面的研究鮮見報道。為了探明氟吡菌酰胺在水和土壤環(huán)境中的降解行為、轉(zhuǎn)化機理和轉(zhuǎn)化產(chǎn)物的生物毒性,本課題研究了氟吡菌酰胺在實驗室條件下水體中的光化學(xué)降解機理和土壤中的降解行為以及氟吡菌酰胺和它的光化學(xué)轉(zhuǎn)化產(chǎn)物的生物毒性,主要取得如下結(jié)果:1.氟吡菌酰胺在50±1℃,pH 4.0、7.2、9.0和黑暗條件下培養(yǎng)5 d,水解率小于8.1%。依據(jù)美國環(huán)保署頒布的EPA712-C-08-012,可得出氟吡菌酰胺在25℃條件下的水解半衰期大于一年,對水解穩(wěn)定。因此,在下述光解研究過程中,水解造成的影響可以被忽略。2.結(jié)合LC-QqQ-MS/MS和LC-IT-TOF-MS/MS技術(shù)的分析結(jié)果,氟吡菌酰胺在高壓汞燈和氙燈下水環(huán)境中主要生成三個光化學(xué)轉(zhuǎn)化產(chǎn)物,分別為2,9-二(三氟甲基)-6,7-二氫吡啶[2,3-e][2]環(huán)苯亞胺-8(5H)-萘酮(TPⅠ)、N-(2-[3-羥基-5-三氟甲基-2-吡啶]乙基)-2-三氟甲基苯甲酰胺(TPⅡ)和N-(2-[5-三氟甲基-2-吡啶]乙基)-2-三氟甲基苯甲酰胺(TPⅢ),其中TPⅠ的最高生成量超過20%,TPⅡ約為9%,TPⅢ小于1%。通過比較高壓汞燈下,水、乙腈和3%異丙醇-水(v:v)中氟吡菌酰胺的光解速率和降解產(chǎn)物含量的差異,推斷TPⅠ是經(jīng)過自由基中間體發(fā)生分子內(nèi)的脫氯環(huán)化形成的,TPⅡ是活性氧親核取代形成的,TPⅢ是抽氫反應(yīng)形成的。TiO_2在氙燈下催化氟吡菌酰胺光化學(xué)降解主要生成6個產(chǎn)物,經(jīng)LC-IT-TOF-MS/MS分析表明,其中兩個產(chǎn)物與TPⅠ和TPⅡ相同,其余四個分別為3-氯-5-三氟甲基-2-吡啶乙基胺(TPⅣ)、3-氯-5-三氟甲基-2-吡啶乙基甲酰胺(TPⅤ)、N-(2-[3-氯-5-三氟甲基-2-吡啶]乙基)-2-三氟甲基-6-羥基苯甲酰胺(TPⅥ)和N-(2-[3-氯-5-三氟甲基-2-吡啶]乙基)-2-三氟甲基-4-羥基苯甲酰胺(TPⅦ),這些產(chǎn)物的形成途徑主要是親核取代和酰胺鍵的斷裂。Fe(Ⅲ)在氙燈下敏化氟吡菌酰胺光化學(xué)降解主要生成7個產(chǎn)物,同樣經(jīng)LC-IT-TOF-MS/MS分析表明,其中三個與TP Ⅰ-Ⅲ相同,三個與TP Ⅳ、TP Ⅵ和TP Ⅶ相同,余下一個為3-氯-5-三氟甲基-2-吡啶乙酰胺(TP Ⅷ),形成途徑除上述途徑外,還包括光氧化作用。3.研究了在高壓汞燈和氙燈下,Fe(Ⅲ)、Cu(Ⅱ)、(NO_3)~-、腐殖酸、富里酸和核黃素這幾種自然水體組分,pH和TiO_2對氟吡菌酰胺光轉(zhuǎn)化的影響。在兩種光源下,氟吡菌酰胺在中性條件下較堿性和酸性下光解快,最快可達兩倍。在高壓汞燈下,TiO_2表現(xiàn)出低濃度的促進效果和高濃度的抑制效果;水體組分主要表現(xiàn)出抑制效果,其中核黃素抑制效果最明顯,可達12.5倍,腐殖酸次之,可達10倍,其余的小于三倍。在氙燈下,TiO_2表現(xiàn)出明顯的催化效果,最大催化效果可達17倍;Fe(Ⅲ)表現(xiàn)出明顯的敏化效果,最高可達79倍;Cu(Ⅱ)和(NO_3)~-表現(xiàn)出低濃度的促進效果和高濃度的抑制效果,核黃素則與二者相反;富里酸表現(xiàn)出抑制效果,最高達兩倍;腐殖酸表現(xiàn)出"S"型效果。4.建立了氟吡菌酰胺在我國三種典型土壤中的殘留分析方法,方法平均添加回收率在97-105%之間,相對標(biāo)準(zhǔn)偏差在3.9-11.6%之間,最低定量限為0.1mgkg~(-1),最低檢出限為5.0-7.5μgL~(-1),基質(zhì)匹配標(biāo)準(zhǔn)曲線相關(guān)線性系數(shù)大于0.99。用建立的分析方法研究氟吡菌酰胺的土壤降解行為,結(jié)果表明氟吡菌酰胺在非滅菌條件下不同土壤含水量和土壤類型中的降解半衰期為55.4-69.3 d,在滅菌條件下不同土壤含水量和土壤類型中的降解半衰期大于一年。這說明所試驗土壤類型對氟吡菌酰胺的土壤降解影響不顯著,微生物降解是氟吡菌酰胺在土壤中降解的主要方式。根據(jù)我國關(guān)于農(nóng)15在土壤中的降解性等級劃分的標(biāo)準(zhǔn),氟吡菌酰胺屬于較易降解農(nóng)藥。此外,通過對比0、7、30、60d的色譜圖,未發(fā)現(xiàn)氟吡菌酰胺主要的土壤降解產(chǎn)物。5.利用發(fā)光細菌毒性試驗研究氟吡菌酰胺在高壓汞燈和氙燈下的光解溶液的急性毒性,結(jié)果表明隨著光照時間的延長,光解溶液對發(fā)光細菌的毒性增加,說明氟吡菌酰胺在光解過程中可能生成毒性更高的產(chǎn)物。利用化學(xué)合成法合成主要光轉(zhuǎn)化產(chǎn)物TP Ⅱ,然后用發(fā)光細菌毒性試驗研究氟吡菌酰胺和TP Ⅱ的急性毒性,結(jié)果表明TP Ⅱ抑制發(fā)光細菌發(fā)光,抑制率隨TP Ⅱ濃度的增加而增加,氟吡菌酰胺刺激發(fā)光細菌發(fā)光,刺激效應(yīng)隨氟吡菌酰胺濃度的增加而先增大后減小,TP Ⅱ?qū)Πl(fā)光細菌的毒性比氟吡菌酰胺更強。選擇ECOSAR和T.E.S.T.軟件預(yù)測氟吡菌酰胺及其8個光轉(zhuǎn)化產(chǎn)物的毒性,結(jié)果表明氟吡菌酰胺的光化學(xué)轉(zhuǎn)化產(chǎn)物的預(yù)測毒性與氟吡菌酰胺相當(dāng)或更高,其中主要產(chǎn)物TP Ⅰ和TP Ⅱ的大鼠經(jīng)口急性毒性比氟吡菌酰胺高約一個數(shù)量級。綜上所述,需要進一步研究TP Ⅰ和TP Ⅱ的生物毒性,并全面評估其環(huán)境和健康風(fēng)險。
[Abstract]:When pesticides are applied to the environment, they will generate many transformation products under biological and abiotic effects, so that organisms may be exposed to the mixed system of pesticides and their transformation products. Research shows that pesticide transformation products may contain toxic pesticides, nuclear matrix is an active ingredient, pesticide bioaccumulation factor increased and the mode of action of diversification, to a certain extent, even determines the safety of parent pesticides on the environment and non target organisms, which in recent years has attracted more and more attention, and is included in the category "the emerging pollutants". However, for many pesticides, especially new pesticides, the mechanism of their transformation in the environment and the related information of their transformation products are still very scarce. Fluopyram is a kind of new pyridine ethyl benzamide fungicides of Bayer crop science and technology R & D, wide bactericidal spectrum, good control effect, has been registered and used in large-scale in China, but also widely used in other countries and regions in the world, but the environment on its transformation and transformation products other aspects of the research reported. In order to explore biological toxicity degradation, fluopyram in water and soil environment in the transformation mechanism and transformation products, this research the degradation behavior of the photochemical degradation mechanism of fluopyram water under laboratory conditions and in soil and fluopyram and its photochemical transformation products of biological toxicity. The main results are as follows: 1. fluopyram in 50 - 1 DEG C, pH 4, 7.2, 9 and 5 d dark cultivation under the condition of hydrolysis rate is less than 8.1%. According to the EPA712-C-08-012 issued by the United States Environmental Protection Agency, the hydrolytic half-life of fluopiridamide at 25 degrees centigrade was more than one year, and the hydrolysis was stable. Therefore, in the following photolysis study, the effects of hydrolysis can be ignored. 2. combined with the analysis results of LC-QqQ-MS/MS and LC-IT-TOF-MS/MS technology, fluopyram in high-pressure mercury lamp and xenon lamp in the water environment mainly produces three photochemical conversion products, respectively, 2,9- two (three trifluoromethyl) -6,7- two hydrogen pyridine ring [2,3-e][2] benzene imine -8 (5H) - Naphthalenone (TP 1), N- (2-[3- hydroxyl -5- three fluorine methyl -2- pyridine] ethyl) -2- three fluorine methyl benzamide (TP II) and N- (2-[5- three -2- fluorine methyl pyridine] ethyl) -2- three fluorine methyl benzamide (TP III), the highest amount of TP of more than 20%, TP II is about 9%, less than 1% of TP. By comparing under HPML, water, acetonitrile and 3% isopropanol water (v:v) differences in fluopyram photolysis rate and degradation product content, that TP I is the result of free radical intermediates of intramolecular dechlorination cyclization to form the TP II is an active oxygen formed by nucleophilic substitution, TP third is the formation of hydrogen abstraction reaction. TiO_2 under xenon lamp in catalytic fluopyram photochemical degradation mainly produces 6 products, LC-IT-TOF-MS/MS analysis showed that two of the product with TP I and TP II, the remaining four were 3- -5- three -2- chlorine fluorine methyl pyridine ethyl amine (TP IV), 3- -5- three -2- chlorine fluorine methyl ethyl pyridine formamide (TP V), N- (2-[3- -5- three -2- chlorine fluorine methyl ethyl] pyridine) -2- three fluorine -6- hydroxybenzamide (TP VI) and N- (2-[3- -5- three -2- chlorine fluorine methyl ethyl] pyridine) -2- three fluorine -4- hydroxybenzamide (TP VII), the formation of these ways the product is the main fracture of nucleophilic substitution and amide bond. Fe (III) under xenon lamp in sensitized fluopyram photochemical degradation mainly produces 7 products, also by LC-IT-TOF-MS/MS analysis showed that three of them with the same TP I - III, IV, TP three and TP TP VI and VII, the remaining one is 3- three -5- chlorine fluorine methyl acetamide (-2- pyridine TP, in addition to the VIII) way of forming pathways, including photo oxidation. 3. in the study of the high pressure mercury lamp and xenon lamp, Fe (III), Cu (II), (NO_3) -, humic acid, fulvic acid and riboflavin several of these natural water components, the effects of pH and TiO_2 light on the transformation of fluopyram. Under two kinds of light sources, the photolysis of fluopidamides under neutral conditions is faster than that in alkaline and acidic conditions, and the fastest is up to two times. Under high pressure mercury lamp, TiO_2 showed low concentration promotion effect and high concentration inhibition effect. The main components of water body showed inhibitory effect, of which riboflavin inhibition effect was the most obvious, up to 12.5 times, followed by humic acid, up to 10 times, and the rest was less than three times. In the under xenon lamp. TiO_2 showed the catalytic effect is obvious, the maximum catalytic effect of 17 times; (III) Fe showed sensitization effect significantly, up to 79 times; (II) and Cu (NO_3) - show to promote the effect of low concentrations and inhibitory effect of high concentrations of riboflavin, and two opposite; fulvic acid showed an inhibitory effect, up to two times; humic acid showed "S" type effect. 4. established fluopyram in three typical soils in China in residue analysis, method of average recovery rate is between 97-105%, the relative standard deviation between 3.9-11.6%, the limit of quantitation was 0.1mgkg~ (-1), the lowest detection limit of 5.0-7.5 gL~ (-1), matrix matched standard curve linear correlation coefficient greater than 0.99. With the degradation behavior of fluorine pyrazole amide to establish the analysis method of soil bacteria. The results showed that fluopyram under non sterile conditions under different soil water content and soil degradation half-life in the type 55.4-69.3 D in sterilized soil with different water and soil types in the degradation half-life of more than one year. This indicates that the soil types of the tested soil have no significant effect on the soil degradation of fluopidamides, and microbial degradation is the main way to degrade fluopiridamide in soil. Fluopiridamide is a more biodegradable pesticide based on the standard of the classification of the degradation grade of agricultural 15 in the soil. In addition, the main soil degradation products of fluopidamides were not found by contrasting the chromatograms of 0, 7, 30 and 60d. 5. the acute toxicity of fluopiridamide in the photodissociation solution under high pressure mercury lamp and xenon lamp was studied by the toxicity test of luminescent bacteria.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ450.1
【相似文獻】
相關(guān)期刊論文 前10條
1 司友斌,岳永德,周東美,陳懷滿;土壤表面農(nóng)藥光化學(xué)降解研究進展[J];農(nóng)村生態(tài)環(huán)境;2002年04期
2 孫震,郁志勇,朱燕,李潔;碘離子對茜素紅光化學(xué)降解的影響[J];遼寧工程技術(shù)大學(xué)學(xué)報;2004年06期
3 田芹,周志強,任麗萍,江樹人,楊麗;農(nóng)藥在水體中光化學(xué)降解研究進展[J];農(nóng)藥;2005年06期
4 李智冬;趙雅芝;全燮;陳碩;;模擬可見光下土壤表面石油的光化學(xué)降解研究[J];環(huán)境科學(xué);2007年09期
5 楊桂朋;林志峰;孫曉春;周立敏;;石油在水溶液中的光化學(xué)降解[J];中國海洋大學(xué)學(xué)報(自然科學(xué)版);2008年04期
6 姚曦;岳永德;湯鋒;操海群;;惡唑菌酮在液相中的光化學(xué)降解研究[J];安徽農(nóng)業(yè)大學(xué)學(xué)報;2008年04期
7 張俊艷;溫裕云;劉s,
本文編號:1341125
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1341125.html